
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 3334

Spaten: a Spatio-temporal and Textual Big Data
Generator

Thaleia Dimitra Doudali ∗

Georgia Institute of Technology
thdoudali@gatech.edu

Ioannis Konstantinou and Nectarios Koziris
CSLAB, National Technical University of Athens

{ikons,nkoziris}@cslab.ece.ntua.gr

Abstract—Social networking users have the ability to check
into Points of Interest (POIs) and associate location with their
posts or tweets, leading to the creation of Geo-Social Networks
(GeoSNs). There are many systems that aim to efficiently store
and analyze plain and socially enhanced spatio-temporal data.
A proper evaluation of these systems should be done using real
data from popular GeoSNs, such as Foursquare, Facebook, etc.
However, privacy restrictions prohibit the access to such real
data in a large scale. Therefore, evaluations are done using
real or synthetic data sets that include either only spatio-textual
data (e.g. tweets) or plain spatial data (e.g. GPS traces) that
are not socially enhanced. In this paper, we present Spaten, an
open-source configurable spatio-temporal and textual data set
generator, that extracts GPS traces from realistic routes utilizing
Google Maps API, combines them with real POIs and relevant
user comments crawled from TripAdvisor and makes the data
available for further analysis. The injection of social properties
extracted by existing Twitter graphs to the generated data along
with further parameterization leads to realistic GeoSN data sets.
We create and publicly offer GB-size datasets with millions of
check-ins and GPS traces. As a proof of concept, we loaded the
generated data into a Big Data enabled NoSQL system, and we
evaluated its scalability by performing queries typically found
in social networking sites. We hope that Spaten can provide the
research community with the ability to generate realistic GeoSN
data in a large scale, so as to properly evaluate their work.

I. INTRODUCTION

Recently, the merge of social networking and location-
based services has led to the creation of Geo-Social Networks
(GeoSNs). Users of social media can check into locations of
interest (POIs) or attach their current location to their posts. In
this way, the corresponding GeoSN data contain information
about the user (social aspect), the location (spatial aspect), the
time (temporal aspect) and the actual post (textual aspect). The
proliferation of spatial data in social networking services has
motivated the development or extension of systems that aim
to efficiently store and process this type of data. For example,
PostgreSQL -a traditional relational database- has incorporated
PostGIS, a spatial database extender, in order to allow location
queries to be run in SQL. Also, Hadoop -a framework for
distributed storage and processing of large data sets- is aware
of spatial data through the SpatialHadoop extension.

In all such works related to spatial data management we
are interested in identifying the data sets, that the authors
use, in order to evaluate their contributions. We observe that

∗ Work done while the author was with CSLAB, NTUA

spatial data sets can be either real or synthetic. For example,
SpatialHadoop [6] uses three real spatial data sets -TIGER,
OSM and NASA- and one synthetic -SYNTH-. Next, when it
comes to spatio-temporal and textual data, there is a large use
of real data sets extracted from Twitter, due to its convenient
free API. For example, the authors of AQWA [2], which
is an adaptive query-workload-aware spatial data partitioning
mechanism, crawled tweets over a couple of months. The
tweets include an identifier, a timestamp, the location in
geographical coordinates and text. Likewise, the authors of
a location-aware publish/subscribe system [8] used a Twitter
data set and the authors of a location-based recommendation
system [4] used a real data set extracted from Foursquare
containing similar properties.

In Twitter, there is also an ability to crawl a graph of
followers in the form of user identifiers instead of real user
information. The combination of tweets and the follower’s
graph can lead to the creation of a real GeoSN data set.
However, authors have limited time to crawl such data, there-
fore the extracted data sets are small. This is the reason
why authors use synthetic data sets, which can be of a
bigger scale, as the authors of a Geo-Social query processing
framework [3] did. Another real GeoSN data set is Gowalla
[5] and is used by the authors that introduced the problem
of geo-social skyline queries [7]. Additionally, confidentiality
and privacy concerns prohibit access to user information of
social networking services. This restriction leads to attempts
to anonymize GeoSN data sets as authors in [9] analyze. Thus,
there is no ability to use a real large-scale GeoSN data set.
Also, the use of synthetic GeoSN data sets created by an
arbitrary combination of spatial and social data can favor some
experiments instead of others, as the authors of [7] state. As a
conclusion, there is an obvious need for real or at least realistic
GeoSN data sets in a large scale.

In this paper, we build Spaten1, a configurable generator
that can produce large amounts of spatio-temporal and textual
data based on realistic user behavior. Spaten extracts GPS
traces from realistic routes utilizing Google Maps API, creates
user check-ins at real POIs associating relevant user comments
crawled from TripAdvisor and makes the data available in
a format that enables further analysis. The combination of
these data with a social network user graph can lead to the

1Code available at https://github.com/Thaleia-DimitraDoudali/Spaten



3335

Fig. 1. Database schema for source data

creation of a realistic GeoSN data set in a large scale. The
main contributions of our work are the following:
• Design and implementation of an open source config-

urable generator of spatio-temporal and textual data.
• Creation of Spaten-Dataset2, a realistic GeoSN data set

consisting of 3GB of data generated by Spaten and a
14GB Twitter graph.

• Insertion of Spaten-Dataset into an HBase cluster, a
distributed NoSQL database.

• Scalability testing of the HBase cluster using a workload
of customized queries.

This work is inspired and builds upon MoDisSENSE [10],
a distributed platform that provides personalized search for
points of interest and trending events based on the user’s social
graph by combining spatio-textual user generated data.

II. GENERATOR

A. Source Data

Spaten uses real Points of Interest (POIs) as a source of
data. These locations where extracted from the online travel
service TripAdvisor, using a generic html crawler. The POIs
are identified on the map by their geographical coordinates, as
well as their address. Also, they come with ratings and reviews
by real TripAdvisor users. The number of such available points
is 136,409, as they were extracted by a 13GB response json
file from the crawler. The points were stored in PostgreSQL, so
as to take advantage of the spatial database extender, PostGIS.
Figure 1 depicts the database schema that was used, which
contains two tables, one for the points of interest and one for
the reviews and ratings of these points.

After storing all POIs into the database, we created an
B-tree index to the identifying attributes of the two tables.
Additionally, we assigned a PostGIS spatial index called GiST,
to the attibute location of the table pois. As location has a
geographic data type, GiST implements an improved R-tree
spatial index. In this way, searching for POIs according to their
location or identifying number, can be done fast and efficiently.

B. Design attributes

Spaten creates users of Geo-Social Networks, who check
into many places during the day and leave a review and rating
to the corresponding points of interest, for a given period
of time. The location and time of the check-in represent the
spatio-temporal aspect of the generator and the review and
rating, that is associated with each check-in, correspond to the
textual aspect. The decisions that the generator makes, such
as which and how many locations the user will visit a specific

2Dataset available at http://research.cslab.ece.ntua.gr/datasets/ikons/Spaten/

Fig. 2. Class diagram of generator’s attributes

day, or the duration of each visit, are made using configurable
random factors. The path from one POI to the next one is
extracted using Google Maps Directions API. Spaten, is able to
construct the GPS traces that represent the route from one POI
to the next one. Finally, the generator uses the Google Static
Maps API, in order to illustrate each user’s daily routes into
a static map. Figure 2 contains the class diagram that shows
the main attributes of the generator, and their relationships.
Spaten is configurable with a set of input parameters that are
mentioned in the appropriate context later in this section. Next
follows a more detailed description of the decisions that Spaten
makes and the attributes that shape its design.

1) Home: The location of a user’s home is the center
around which he walks every day. Since the points of interest
that a user visits are selected in a random way, special handling
is required to avoid routes that don’t make sense. For example,
a route where a user walks one day in Greece, the next day
in France and the other day again back in Greece is not
realistic. This is the reason why the location of a user’s home
is specified, so that a user can walk in a sensible distance from
his home every day. More specifically, a user can walk in a
range of maxDist meters from his home, as those are defined
by the according input parameter. In the implementation of the
generator, the home of a user is defined as the point where
his first ever visit is made on startDate -the input parameter
that defines the first day of generated daily routes. The choice
of the home location is done using a generator of random
numbers which follow a uniform distribution. The range of
the distribution is the total number of source POIs stored in
PostgreSQL.

2) Travel: A user created by the generator is capable to
travel, so as to be able to visit places that are further than
maxDist meters from his home. In this way, routes one day
in Greece and the next one in France make sense. However,
a central point around which the user will walk during his
trip has to be defined. In the implementation of the generator,
this point is chosen to be the first ever point that the user
visits during the current trip. The choice of that point is done
using a generator of random numbers that follow a uniform
distribution. The range of the distribution is the number of
available source POIs.

As far as the duration of the trip is concerned, each user can
travel for a time interval that corresponds to 10% of the total



3336

time interval for which Spaten produces daily routes. The days
of the time interval can be spread out to multiple trips. The
duration of each trip is defined using a generator of random
numbers which follow a normal distribution. The mean of this
distribution is declared to be 5 and the standard deviation is
2. In this way, according to the 3-sigma empirical rule for the
normal distribution, 95% of the random trip durations will be
between 1 and 9 days, which is reasonable for short and long
trips. To sum up, if the user is about to travel the next days,
the duration of the trip is defined in a random way and if the
duration of the trip doesn’t exceed the available travel days,
the prospective trip begins. If the duration of the trip exceeds
the available days, then the trip is calculated to last for the
available days.

Finally, the decision whether the user will begin a trip or not
is made in a random way, using a generator of random numbers
that follow the Bernoulli distribution. Thus, the generator
decides every day whether or not to start a trip for the current
user. This decision ressembles a fair coin toss. Therefore, if
the generator decides to start a trip for the current user, then
it decides, in a random way as well, the duration and the
location of the trip. Each daily route during the trip has to be
in maxDist range from the trip’s central location.

3) Check-in: The number of daily check-ins is defined
using a generator of random numbers that follow a normal dis-
tribution with a mean value determined by the input parameter
chkNumMean and standard deviation determined by the input
parameter chkNumStDev. Therefore, every day the generator
picks a different number of daily check-ins, which according
to the 3-sigma empirical rule for the normal distribution, will
most probably be around the mean value.

The locations of check-ins are determined in a random way
by the generator. More specifically, the choice of the point of
interest, where the first check-in of the day will take place,
is made using a generator of random number which follows
a uniform distribution. The range of this distribution is the
number of available POIs that are located in maxDist range
from the user’s home. In this way, the generator will pick a
random POI between those who are in walking distance from
the user’s home. If the user travels, then the generator will
choose a random POI between those who are in maxDist range
for the trip’s central location. In order to find those points
and select them from the PostgreSQL database, the function
ST DWithin function is used, which is available through the
PostGIS extension. This function returns true for the points
which are in the desired distance from the user’s home,
calculating the distance using the geographical coordinates of
the points. The search of these points in the PostgreSQL table
is done efficiently, due to the GiST index. The generator will
assemble all the points that are in the desired range, and choose
a random one as the first point that the user visits that day.

Using the same strategy, the generator chooses all next
points of interest that the user will visit the specific day.
However, the next points visited should be in a smaller
distance from the first POI visited. This distance is defined by
the input parameter dist. Also, a user is not allowed to visit

the same place twice during the day, so every next check-in
should be in a POI not visited that specific day.

4) Review: The generator assigns a rating and review to
every user’s check-in. More specifically, every source point of
interest as it is stored in PostgreSQL database, contains certain
reviews for the specific point. The generator chooses randomly
a review amongst the available for the POI, using a generator
of random numbers that follow a uniform distribution. The
range of the distribution is the number of available reviews
for the specific POI.

5) Path: The generator issues an http request to Google Di-
rections API, in order to obtain information about the path that
a user will follow in order to walk from one point of interest
to the next one. Since the source data contain the geographical
coordinates of every point of interest, the generator has access
to the latitude and longitude of every available point. Thus,
it sets as value of the origin parameter to the http request
the geographical coordinates of the current point where the
user checked in and as destination the coordinates of the next
point of interest that the user will visit, as it was selected
in a random way. Also, he specifies the parameter mode into
walking, because in our approach the user walks from one
POI to the next one. Finally, the response file of the request
will be in json file format. For example, a request to Google
Directions API can be the following:

http:
//maps.googleapis.com/maps/api/directions/json?origin=37.976159,

23.776274&destination=37.978180,23.768957&mode=walking

The json response file contains information about the path
on the map, that the user will have to follow in order to
get to his destination, as well as the duration of his walk
to the destination. We extract from the json file, the field
polyline from each step of the route. The polyline holds an
encoded representation of the step’s path. We decode each
step’s polyline using the reverse Encoded Polyline Algorithm
Format [1]. In this way, we have access to a list of geographical
coordinates indicating all the points on the map, that the user
will walk through from the origin to the destination. These
points will be stored as GPS traces, representing the user’s
route. For each path, the starting and ending points, which are
the points of interest, will also be stored as GPS traces.

6) Time: As far as time is concerned, the generator defines
that the first check-in of the day will happen at the time
defined by the input parameter startTime. The duration of the
visit to a point of interest is set using a generator of random
numbers that follow a normal distribution. The mean value of
the distribution is defined by the chkDurMean input parameter,
and the standard deviation by the chkDurStDev parameter. The
time when the next check-in will occur is set to be the time
when the previous one happened, plus the duration of the
previous visit and the duration of the walk from the previous
point to the next one. The duration of the walk, is extracted
from the field duration of the Google Directions json response
file. If the time that the next check-in will happen exceeds the
time defined by the input parameter endTime, then the next



3337

Fig. 3. Example of static map image

check-in won’t occur, and the check-ins end at that time for
that specific day. Each check-in is timestamped using the Unix
Time Stamp, which is a long integer representation of the date
and specific time (UTC timezone) of the event.

Concerning the timestamp of the GPS traces, they are
calculated through the json response file. The duration of the
route from the origin to the destination is split up by the
number of points decoded from the polyline. Therefore, the
timestamp of the first GPS trace of the path is set to be the time
the visit at the origin ended plus the fraction of the divided
time needed to get to that point on the map.

7) Static Map: Spaten uses a static map in order to depict
the user’s daily route, by issuing an http request to the Google
Static Maps API. The points where a user checked in during
the day are distinctly visible on the map with markers. These
markers are also named using capital letters of the alphabet
in order to show the order that the user visited them. The
generator uses the stored polylines, as they were extracted
by the json response file, in order to define the path that the
map will indicate using a blue continuous line. The image of
the map is accessible through the URL that forms the http
request to the API. The generator stores the URLs created at
the corresponding output file, so that the image of the map can
be accessible by the users of the generator. Figure 3 shows the
static map that corresponds to the following request to Google
Static Maps API:
https://maps.googleapis.com/maps/api/staticmap?&size=1000x1000&markers=label:A|

44.7698,-69.7215&markers=label:B|44.7651,-69.7189&markers=label:C|
44.7639,-69.7196&markers=label:D|44.7656,-69.717&path=color:blue|enc:

gbgpGjnphL@FZKtE BxEeB‘Bk@z@[bA]tBo@HG∼Ai@JMFG?A@A?A@C?C?E?
C?EAE?I??M @??Lˆ??Tj@Vl@LNDFDDFDDDB@DBD@HBLBRBB?H@JAF?

DAFAHCFCDCBCDEDGNU??OTEFEDCBEBGBIBG@E@G?K@IAC?
SCMCICEAECCAEEGEEEEGMO??Wm@Uk@cAyCs@ C??bA A

Users Check-ins GPS traces
9464 1586537 38800019
3GB 641 MB 2.4 GB

TABLE I
GENERATED DATA

III. DATASET

A. Configuration

We were able to create a large spatio-temporal and textual
data set using Spaten. The generator was configured so that
the number of daily check-ins would follow a normal distri-
bution with a mean value of 5 and standard deviation of 2.
The duration of each visit in hours also followed a normal
distribution with a mean value of 2 and standard deviation of
0.1. Each user was be able to visit places that are in 50,000
meters radius from his home or travel location. Also, he was
allowed to walk in a 500 meters radius from the one place
he visits to the next one. Each user visited the first place of
the day at 9 am. Moreover, the last daily check-in would take
place no later than 11 pm. The generator produced daily routes
for the time period between the 1st of January 2015 and the
1st of March 2015.

Respecting the request restrictions for the users of the free
Google Directions API to 2500 requests per day to the API,
the generator could run once a day creating 14 users at a time
for the specific configuration. Therefore, we set up a cluster
of 31 Virtual Machines (VMs) in order to be able to create a
much bigger number of users per day. Each VM of the cluster
had 1 CPU, 1 GB RAM and 10 GB disk. The PostgreSQL
database, where the source data were stored, was set up in a
different VM where the generator run as well. This specific
VM had 2 CPU, 4 GB RAM and 40 GB disk in order to be
able to store the source data. When the generator was running
on the cluster VMs, a remote connection to the PostgreSQL
database was established in order to gain access to the source
data as well.

With this setup and using the Google Directions free API,
we were able to run the generator on each VM collecting
448 users per day. At the end of the generator’s run period,
we were able to have 9464 users and their 2 months daily
routes. The created dataset was available in the generator’s
two output files, one that stored the user’s daily check-ins
and another one having the user’s total gps traces indicating
the daily trajectories. Table 1 shows the number of generated
data. We also had available a 14 GB friend graph which we
adjusted in order to match the number of 9464 users created
by the generator. All these data constitute Spaten-Dataset, a
realistic GeoSN data set of a large scale which is available for
download through Spaten’s repository web page.

B. HBase data model

The overall dataset of check-ins, GPS traces and friends
was stored into an HBase distributed database for a proof of
concept scalability evaluation. HBase is a NoSQL database
where tables consist of rows and columns. All columns of
a table belong to a particular column family. We create one



3338

table in order to store the friend graph. The data about friends
consist of user ids. For example, user no.1 has friends the users
no.2, no.3 etc. Each row holds all the users that are friends of
the user whose id is the key of the row. There is one column
family ’friends’ including all the friends of one user and the
column qualifier represents a single friend using his user id.
Then, we create a table for the check-ins. Each row holds all
the check-ins of the user whose user id is the row key. There
is one column family ’checkIns’ which holds all the check-ins
of each user and the column qualifier represents a single user
check-in through its timestamp. Finally, we create a table in
order to store the GPS traces. Each row holds all the GPS
traces of the user whose user id is the row key. There is one
column family ’gpsTraces’ which holds all the GPS traces of
each user and the column qualifier represents a single user
GPS trace through a string of the geographical coordinates
combined with the timestamp of the GPS trace.

C. HBase cluster

The overall dataset was stored into an HBase distributed
database. We used the version 0.94.27 of HBase and the
version 1.2.1 of Hadoop in order to utilize the HDFS. The
HBase was set up over HDFS on a cluster of 32 VMs,
consisting of 1 master and and 32 region servers and 1
namenode and 32 datanodes. All different types of data were
splitted into 32 parts, so that they are distributed equally into
the region servers when the following tables were created.
More specifically, when we created the table of ’friends’ in
HBase, we predefined the keys where the total table would
be splitted into the region servers. Thus, the table was pre-
splitted into 32 regions so that the data were equally divided
into the region servers. The split into 32 parts was also done
for the tables of ’check-ins’ and ’gps-traces’. The master VM
which contains the HBase master as well as the namenode
has 2 CPU, 4GB RAM and 40 GB disk. The master is at the
same time a region server and a datanode. The other 31 VMs
holding the rest region servers and datanodes have 1 CPU, 2
GB RAM and 10 GB disk.

IV. EXPERIMENTS

A. Queries

After the insertion of all available data into the HBase
cluster, we implemented several queries over the tables of
’friends’ and ’check-ins’. These queries can be imposed to any
social networking service that contains data about users that
check in to several locations and have as friends other users of
the service. As HBase is a NoSQL database and doesn’t have
a query execution language like SQL for example, the imple-
mentation of the queries was done using HBase coprocessors.
HBase coprocessors enable distributed computation directly
within the HBase server processes on the servers local data.
In this way the computation of intermediate results and other
complex calculations is transferred to the region servers that
contain the respective data, alleviating the client from a heavy
computational load. The following queries were implemented:

Fig. 4. Workload setup

• Most visited POI: Get the most visited points of interest
of a certain user’s friends.

• News Feed: Get the check-ins of all the friends of a
specific user for a certain day into chronological order.

• Correlated Most Visited POI: Get the number of times
that a user’s friends have visited the user’s most visited
POI.

B. Workload

Using the above queries we created a custom workload in
order to test the behavior of the HBase cluster to multiple
requests. More specifically, the workload consists of the three
different type of queries, since they all refer to the same HBase
tables. Moreover, the workload takes as input the number of
queries that will be executed. In addition, since all queries
include the retrieval of the friends of one user, that user is
chosen randomly. The user that corresponds to each query is
chosen randomly from the total user population.

Then, according to the number of queries, all types of
queries participate in the workload in a cyclic assignment.
For example, if the client wants 5 queries to be executed then
those will be 1. most visited POI, 2. news feed, 3. correlated
most visited POI, 4. most visited POI, 5. news feed. Also,
the queries are executed in parallel as different threads. In
this way, the HBase cluster receives simultaneously the query
requests. The total execution time of the workload will be the
biggest execution time amongst the queries of the workload.

There is one client that according to the specified number
of queries to be executed, creates the workload in the way
described previously. This client is hosted on a VM with 2
CPU, 4 GB RAM and 40 GB disk. The client is responsible
to receive the number of queries to be executed and create the
workload in the way described previously. The queries arrive
at the same time in the HBase cluster. Figure 4 depicts the
workload setup.

C. Scalability Evaluation

Using the aforementioned setup we performed a scalability
evaluation, in order to analyze how HBase handles the work-
load for the specified data storage model in different cluster
sizes. We calculated the latency and throughput of the system.
More specifically, latency is calculated as the mean execution
time of the queries. Throughput is the number of queries
executed per second. We measured the latency and throughput
of the system for an increasing number of concurrent queries.
We started with the HBase cluster having 32 nodes. Then, we
resized the cluster to 24, 16, 8 and 4 nodes in order to observer
the variations in the latency and throughput. The restructure of
the cluster was achieved by decommissioning the datanodes



3339

20 40 60 80 100
Concurrent Queries

0

3

6

9

12

15

18

21

L
at

en
cy

 (
se

c)

32 Nodes
24 Nodes
16 Nodes
8 Nodes
4 Nodes

Fig. 5. Scalability Evaluation - Latency

20 40 60
Concurrent Queries

0

2

4

6

T
h
ro

u
g
h
p
u
t 

(q
u
er

ie
s/

se
c)

32 Nodes
24 Nodes
16 Nodes
8 Nodes
4 Nodes

Fig. 6. Scalability Evaluation - Throughput

and region servers to the desired number. Both HDFS and
HBase offer commands in order to achieve a cluster resize by
moving data and regions into the remaining nodes, preventing
data loss and ensuring that the regions will be data balanced.

As Figure 5 shows, latency increases as the number of nodes
of the HBase cluster decreases. Latency is the mean execution
time of the queries. Thus, it is expected that the latency will
increase when there are fewer nodes in the cluster. In more
details, when the cluster size reduces there are fewer servers
to handle the read requests and calculations that accompany
the query. Additionally, the latency increases as the client
sends more concurrent queries. This happens due to the fact
that as the number of concurrent queries elevates, the servers
cannot resolve them simultaneously and many of them have to
wait in the respective queues. Therefore, there are queries that
have additional waiting time to their total execution time. This
waiting time becomes bigger when there are fewer servers to
handle the concurrent queries. On the same level, when there
is a small number of concurrent queries on different cluster
sizes, then the latency is approximately the same due to the
fact that there is no added waiting time.

As far as throughput is concerned, according to Figure 6,
we observe that the throughput increases as the size of the
cluster becomes bigger. This is expected due to the fact that
more servers can serve more concurrent queries. When the
number of servers increases, the amount of work assigned to
each server reduces, if the cluster is balanced. In our case,
we ensure that the cluster is balanced as far as the data
are concerned, when we pre-split the data into 32 regions.
Also, HBase runs a balancer that keeps the regions equally
distributed to the region servers. Therefore, when the cluster

has 32 region servers, those have to run calculations over fewer
data when the coprocessors are called, as opposed to when the
cluster has fewer nodes.

As fas as scalability is concerned we observe that rise
in resources and performance is almost linear, which shows
that the system is not scalable in a satisfactory level. There
are many reasons that can contribute to this result. Firstly,
the workload is not predefined and can variate according to
the randomly selected user factor. Additionally, cache misses
affect tremendously the performance. When data for a query
are retrieved from the server’s cache, then the response time
is noticeably less than getting the data from the data node’s
disk. Also, the workload is executed on a real time system,
on a cluster of virtual machines whose performance can be
affected by the rest users of the cloud service.

V. CONCLUSION

In this paper, we designed and built Spaten, a configurable
generator of spatio-temporal and textual data. We combined
the data created by Spaten with a social network graph and
created Spaten-Dataset, a realistic Geo-Social network data
set of a large scale. Then, we proposed a storage schema for
Spaten-Dataset into a NoSQL distributed database, in order to
enable further analysis. We implemented customized queries
over those data and created a workload so as to test the
scalability of the corresponding HBase cluster deployed in the
cloud where we showed that our approach can scale almost
linearly to the number of computing and storage resources.

ACKNOWLEDGMENT
This paper is supported by European Union’s Horizon 2020

RIA programme under GA No 690588, project SELIS.
REFERENCES

[1] Encoded polyline algorithm format. https://developers.google.com/
maps/documentation/utilities/polylinealgorithm.

[2] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani,
H. Elmeleegy, and T. Qadah. AQWA: Adaptive Query-Workload-Aware
Partitioning of Big Spatial Data. PVLDB, 8(13):2062–2073, 2015.

[3] N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A general
framework for geo-social query processing. Proc. VLDB Endow.,
6(10):913–924, Aug. 2013.

[4] J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and preference-
aware recommendation using sparse geo-social networking data. In
Proceedings of the 20th International Conference on Advances in
Geographic Information Systems, SIGSPATIAL ’12, pages 199–208,
New York, NY, USA, 2012. ACM.

[5] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: User
movement in location-based social networks. KDD ’11, pages 1082–
1090, New York, NY, USA, 2011. ACM.

[6] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework
for spatial data. In 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages
1352–1363, 2015.

[7] T. Emrich, M. Franzke, N. Mamoulis, M. Renz, and A. Züfle. Database
Systems for Advanced Applications: 19th International Conference,
DASFAA 2014, Bali, Indonesia, April 21-24, 2014. Proceedings, Part II,
chapter Geo-Social Skyline Queries, pages 77–91. Springer International
Publishing, Cham, 2014.

[8] G. Li, Y. Wang, T. Wang, and J. Feng. Location-aware publish/subscribe.
In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13, pages 802–810, New
York, NY, USA, 2013. ACM.

[9] A. Masoumzadeh and J. Joshi. Anonymizing geo-social network
datasets. In Proceedings of the 4th ACM SIGSPATIAL International
Workshop on Security and Privacy in GIS and LBS, SPRINGL ’11,
pages 25–32, New York, NY, USA, 2011. ACM.

[10] I. Mytilinis, I. Giannakopoulos, I. Konstantinou, K. Doka, D. Tsitsigkos,
M. Terrovitis, L. Giampouras, and N. Koziris. Modissense: A distributed
spatio-temporal and textual processing platform for social networking
services. SIGMOD, pages 895–900, 2015.


