Georgia Tech

1. Motivation

- High Performance Computing and Big Data applications have dataset sizes that often exceed the available DRAM capacities.
- Emerging memory technologies that are much cheaper, such as Non Volatile Memory, are used to extend the memory space creating a heterogeneous memory subsystem.
- Data in Non Volatile Memory will incur higher access latencies, affecting the application performance, slowing it down compared to an ideal case when all data could fit in DRAM.
- Existing solutions reduce the performance **slowdown** by prioritizing allocations of the most frequently accessed objects in DRAM. However, they assume fixed hardware capacities.

4. CoMerge Solution

CoMerge: Memory sharing policy that prioritizes DRAM allocations for critical data objects. Achieves:

- Lower runtime across all collocated applications.
- Higher DRAM utilization.

Thaleia Dimitra Doudali and Ada Gavrilovska. 2017. CoMerge: Toward Efficient Data Placement in Shared Heterogeneous Memory Systems. In Proceedings of MEMSYS 2017, Alexandria, VA, USA, October 2–5, 2017, 11 pages.

Data Management in Heterogeneous Memory Systems

Thaleia Dimitra Doudali, Ada Gavrilovska thdoudali@gatech.edu, ada@cc.gatech.edu

2. Problem Statement

3. Observations