Mnemo: Boosting Memory Cost Efficiency

Georgia

Tech

iIn Hybrid Memory Systems

Thaleila Dimitra Doudali, Ada Gavrilovska
thdoudali@gatech.edu, ada@cc.gatech.edu

G

1. Motivation

2. Problem Statement

‘Thaleia created a new web platform that uses a N
cloud-based in-memory key-value store, in order to
accelerate data retrieval. She has a lot of data to host,
that are trending frequently, so she needs as much

. memory capacity as she can afford. -

P
DRAM takes 70% of the total Virtual Machine cost. Her
\budget allows only for a small amount of DRAM.

\

/

&

‘Thaleia learns that Non Volatile memory Is cheaper, so -
she decides to buy both DRAM and NVM, spending
_around the same amount of money for more capacity. |

/However, Thaleia has some high priority clients and
needs to guarantee certain latency for data retrieval.
Introducing NVM to her memory subsystem, will affect

.and potentially violate these SLA agreements. Y

‘\\\\\

L]

a N
How can Thaleia quickly figure out how much DRAM to

NVM capacity ratio to use, so as to have the desired

errformance, while being the most cost-efficient choice?/

In-memory key-value stores

\'(L DN \'(
:[:: 7 7
\ “n e
G Gz »ﬁZQ%ZZ%%yf' Gz II *2%%%2%¢/; G

Problem: How to quickly decide the ratio of DRAM to Non
Volatile Memory, that provides the desired application

performance together with high cost efficiency?

3. Why is it important?

— .;7 (:)'> L j : : ; : ? _ 1 L
o\o] - zipfian e hotspot |
= | eme Jatest — estimate

= S0 T T

3 I//II/ :

'1,,

36 52 68 84 100
Percentage of DRAM-only cost (%)

cost-to-performance
sweet spot

There are workloads, like hotspot (Trending), where the placement in
DRAM of the hottest only keys, increases application runtime by a
small and acceptable amount (10%). The cost savings can be huge,
assuming that NVM $/byte can be only 20% of the DRAM $/byte.

Solution: Build a profiling tool that estimates the
application slowdown for incremental DRAM to NVM
capacity ratio, thus cost, on a hybrid memory system.

4. Mnemo Design

5. Results

6. Highlights

FastServer IP Key Pattern
SlowServer IP Request Pattern

: Mnemo
v |
4 Sensitivity Engine R |
Workload execution ;
over FastMem-only :

price

v

(Pattern Engine
Mapping of

request count

_ across key space Y,

B

_ and SlowMem-only)

FastRunTime ESIowRun Time E
FastReadTime :SIowReadTimel ' Req(keys)
FastWriteTime ' SlowWriteTime | |
v v v
& i

Estimate Engine
Estimates workload runtime slowdown across the
key space

4

L B

\/

(key ID, performance slowdown, cost reduction factor)

250-

dynamodb
redis
memcached |
estimate

Runtime slowdown (%)

=4 36 52 68 84 100
Percentage of DRAM-only cost (%)

Mnemo accurately produces performance slowdown estimates for
incremental DRAM to NVM capacity ratio (left to right), across the

three top-ranked in-memory key-value stores.
Users of Mnemo can then extract the cost-to-performance

configuration, that suits their budget and performance guarantees.

~
High Accuracy: Mnemo uses a simple yet extremely
accurate model to estimate the performance
= Kdegradation. (0.75% median error))
: N

Trivial Overhead: Mnemo’s pattern analysis and
estimation model run instantaneously. The overhead is

Ghe time to get the performance baselines.

r

/

Robustness to Downsampling: Mnemo’s estimate is
accurate even for downsized versions of workloads,
\that retain their request access pattern.

/

All work is part of the projects:
ECP SICM (Software Interface to Complex Memories)
SSIO Unity (Unified Memory and Storage Space)

