
Mnemo: Boosting Memory Cost Efficiency in Hybrid Memory Systems

Thaleia Dimitra Doudali

Georgia Institute of Technology

Ada Gavrilovska

Georgia Institute of Technology

Abstract—For hosting data-serving and caching workloads
based on key-value stores in clouds, the cost of memory represents
a significant portion of the hosting expenses. The emergence of
cheaper, but slower, types of memories, such as NVDIMMs, opens
opportunities to reduce the hosting costs for such workloads. The
question explored in this paper is how to determine adequate
allocations of different memory types in future systems with
heterogeneous memory components, so as to retain desired
performance SLOs and maximize the cost efficiency of the
memory resource. We develop Mnemo, a memory sizing and data
tiering consultant, that permits quick exploration of the cost-
benefit tradeoffs associated with different configurations of the
hybrid memory components used by key-value store workloads.
Using experimental evaluation with different workload patterns,
Mnemo is able to afford applications such as Redis, Memcached
and DynamoDB, with substantial reduction in their hosting costs,
at negligible impact on application performance, thus improving
the overall system memory cost efficiency.

I. INTRODUCTION

Cost of Memory. In-memory key-value stores are tradition-

ally used in data serving and caching applications, heavily

deployed in native and cloud infrastructure. Such applica-

tions rely on the fast data retrieval that memory provides,

compared to storage, in order to meet their clients Service

Level Agreements (SLAs) and get the desired performance.

In addition, they require significant memory capacity, in order

to store the huge amount of data generated every minute in

the Internet [17]. For this reason, major cloud providers like

Amazon, Google and Microsoft Azure offer Memory Opti-

mized Virtual Machines with significantly high capacities – in

the few TBs range. They also offer Virtual Machines (VMs)

with specialized support for the widely used in-memory key-

value stores Redis and Memcached, like AWS ElastiCache.

In order to understand the isolated cost of memory in the

cloud, across the different providers, we describe the hourly

VM cost as a simplified function of the hourly cost C for a

single vCPU and the hourly cost M for 1GB of memory, using

the following equation:

VM Cost = vCPU ×C + GB ×M
We solve a system of equations derived from all VM

instances per cloud provider, using the regression method of

least squares, following the methodology described by Amur

et al. [18]. More specifically, we estimate the memory cost of

the cache.r5 Memory Optimized AWS Elasticache [3] VM

instance, the n1-ultramem, and n1-megamem Memory

Optimized Google Compute Engine [6] VM instances and the

E, and M Extreme Memory Optimized Microsoft Azure [11]

VM instances.

In figure 1 we observe that the cost of memory approxi-

mately constitutes 60% to 85% of the overall VM cost, making

101 102 103

Memory (GB)

0

20

40

60

80

100

%
o
f
V
M
c
o
s
t

On-Demand Hourly Cost of Cloud Memory

AWS Elasticache Google Cloud Azure

Fig. 1: Percentage of the cost of memory in select Memory

Optimized Virtual Machines across major cloud providers.

capacity sizing decisions absolutely crucial with respect to

the available cost budget and desired application performance

levels.

Hybrid Memory Systems. This non-trivial cost of memory,

coupled with the demand for high memory capacities and the

scaling limitation of traditional DRAM technologies [29], has

led industry to develop new types of memory technologies.

In particular, Non-Volatile Memory DIMMs (NVDIMMs),

such as Intel’s upcoming Optane DC Persistent Memory [7],

based on Intel’s 3d-XPoint technology [1], present an attractive

option for system integrators, as they are expected to have an

order of magnitude higher density, compared to DRAM, at a

much lower per unit cost. While the concrete price point of

these technologies is not presently known, industry projections

have estimated that NVDIMMs will offer a 3-7x reduction in

per GB cost compared to DRAM [16], [24]. Such reduction

introduces a potential for a 40-67% decrease in the VM costs,

given estimates of the per-VM memory costs in Figure 1.

However, NVDIMMs also have higher access latency and

lower bandwidth compared to DRAM, making it unlikely

that they will become just a drop-in replacement for DRAM.

The co-existence of these different technologies creates hybrid
memory systems, usually consisting of one memory component

that permits fast accesses, like DRAM, and a slower one, such

as NVDIMMs. Future cloud systems are expected to provide

VMs comprising both traditional DRAM and NVDIMMs with

even higher capacity than the existing DRAM-based Memory

Optimized VMs. In fact, Google is the first cloud provider to

announce the availability of VMs with up to 7 TBs of Intel’s

Optane DC Persistent Memory in 2019 [4].

Data Management in Hybrid Memory Systems. Appli-

cations that execute on hybrid memory systems will have

to deal with a potential performance degradation from the

ideal case of executing with infinite DRAM-only capacity.

This is the reason why, there has been substantial research

effort into building intelligent data placement and manage-

412

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00080

(a) Stand-alone. (b) Existing Tiering Solution + Stand-alone. (c) Optimized Key-Value Store Tiering + Stand-alone.

Fig. 2: Mnemo is a memory capacity sizing consultant, complimentary to data tiering solutions. Mnemo quickly explores the

trade-offs between the memory system cost and application performance, providing users with the most cost-efficient memory

capacity ratio that guarantees the desired performance. Mnemo can be utilized (a) stand-alone, (b) together with existing generic

tiering profiling tools or (c) MnemoT extension provides the standalone functionality together with key-value store optimized

and low profiling overhead tiering decisions.

ment techniques, ranging from application- [9], [24], [30],

to operating system- [25], all the way down to hardware-

level solutions [20]. These solutions focus on optimizing

the data placement across a hybrid memory system, so that

frequently accessed data can benefit from the fast access

speeds of DRAM [24], [25], or trigger data migrations that

allow for maximum bandwidth utilization of all memory

components [20].

Problem Statement. Data tiering solutions can reduce the

application performance slowdown when executing on hybrid

memory system with fixed capacities, by optimizing their us-

age efficiency. In this paper, we target the orthogonal question

of how should one determine the ideal capacity ratio between

the fast and slow components, so as to maximize the system’s

cost efficiency without significantly impacting performance. In

other words, what is the minimum amount of DRAM capacity

that an application requires, in order to perform sufficiently

well, respecting any performance expectations or guarantees.

Experimental analysis with Redis [13], Memcached [10] and

DynamoDB [2], the three currently highly rated key-value

stores [5], shows that there can be workloads whose access

pattern allows for a substantial reduction in the amount

of DRAM required, thus the total memory cost, in return

for trivial application performance degradation. For example,

if a workload heavily accesses 20% of the keys, then a

DRAM:NVM capacity ratio of more than 20:80 will give triv-

ial performance improvement. Also, our results demonstrate

that the potential for savings is highly workload-dependent,

in fact performance is tightly coupled with the key access

pattern, thus a-priori knowledge of the workload can provide

very accurate projections of cost-performance trade-offs.

Solution Summary. Motivated by the observed behavior of

cost vs application performance for variable DRAM:NVM

capacity ratios, the potential for significant cost savings and

the importance of workload knowledge, we present Mnemo –

an open-source key-value store specific profiling tool which

permits exploration of the cost-benefit tradeoffs of using

hybrid memory systems. More specifically, Mnemo quickly

produces an accurate trendline of application performance for

incremental DRAM to NVM capacity ratio, thus incremental

memory system cost. We envision Mnemo to be a profiling

tool that can help users who deploy key-value stores on the

cloud, quickly understand what capacity sizings of VMs with

DRAM and VMs with NVM [4] provide the best trade-

offs between application performance and memory cost, with

respect to customer Service-Level-Agreements (SLAs) and

system cost budget limitations.

Figure 2 illustrates the possible deployment scenarios of

Mnemo as a key-value store workload profiling tool, for the

purpose of memory capacity sizing.

1. Stand-alone (Figure 2a). In this configuration Mnemo

calculates application performance estimates for incremen-

tal sizing of DRAM with the keys as they get accessed

(touched) by the workload access pattern. Mnemo gets the

necessary performance baselines by actual workload execu-

tion and provides the estimate via a simple yet extremely

accurate analytical model.

2. Existing Tiering Solution + Stand-alone (Figure 2b).

In this configuration, the user first utilizes existing tiering

solutions, that are generic for any application type not just

key-value store workloads. The tiering solution will provide

the user with the DRAM key allocations that optimize

perfomance in a hybrid memory system. Mnemo will then

calculate performance estimates for incremental DRAM

sizing following the tiered key ordering. In this way, Mnemo

provides users with the most performance optimized and
cost efficient tiering of the key space.

3. Optimized Key-Value Store Tiering + Stand-alone (Fig-

ure 2c). This is an extended version of the tool, MnemoT,

that includes a custom tiering solution optimized for key-

value store workloads with respect to the profiling overhead.

MnemoT is now both a tiering and capacity sizing profiling

tool, that provides users with quick and accurate tiering and

cost efficient static placement decisions.

II. EXPERIMENTAL SETUP

Testbed. Due to restricted access to commercially available

hybrid memory platforms, we use native hardware to emulate

413

Node FastMem SlowMem
Factor B:1 L:1 B:0.12 L:3.62
Latency (ns) 65.7 238.1
BW (GB/s) 14.9 1.81

TABLE I: Testbed Bandwidth and Latency values for DRAM

(B:1 L:1) and emulated NVM (B:x L:y) of x times reduced

bandwidth and y times increased latency.

Runtime FastMem SlowMem Cost Reduction
Best Case C bytes 0 bytes 0
In between F bytes S bytes p = 0.2
Worst Case 0 bytes C bytes 1

TABLE II: Short description of the performance baselines

together with the corresponding capacity sizings and memory

cost reduction factors. Cost reduction is captured as a factor

of the FastMem-only cost.

a system with two memory components, one that is of high

bandwidth and low latency (i.e., DRAM), referenced through-

out the paper as FastMem, and one of significantly lower

bandwidth and higher latency (i.e., NVDIMM), referenced

as SlowMem. Our testbed consists of a 12-core, dual-socket

Xeon platform, with two 4 GB DDR3 memory nodes and a

12 MB shared Last Level Cache. We emulate SlowMem via

throttling the DRAM node of one socket, according to prior

research [23], [25], [26]. The other socket remains unmodified

and corresponds to FastMem. Table I summarizes the latency

and bandwidth values of our testbed. We do assume that

SlowMem is used as an extension of the flat memory address

space, in other words FastMem does not serve the purpose of

caching for SlowMem.

Server Configuration. We deploy Redis, Memcached and

DynamoDB locally, on our native hardware testbed, using their

default configuration for in-memory functionality. We do not

make any modifications in the source code of the key-value

stores. For this reason, we can set up a local deployment of the

closed-source DynamoDB [14]. Since these key-value stores

are designed for DRAM-only systems and in order to allow

for variability in the data allocations across FastMem and

SlowMem, we run two server instances on the same testbed.

At time of deployment, we use the numactl command-line

Linux utility, in order to bind the execution of the server

processes to the CPU cores of the FastMem socket, and their

memory allocations to one memory node, either FastMem or

SlowMem exclusively. In this way, we will be able to establish

performance baselines, where both server instances allocate all

data in FastMem or SlowMem, respectively. These baselines

will be critical for the design of Mnemo, as explained in

Section IV.

Client Configuration. We use the Yahoo! Cloud Serving

Benchmark [21], in order to capture server performance from a

client perspective. The client is configured to run on the same

testbed as the server, without interference, so as to reduce any

network-related noise and to truly evaluate the impact of the

hybrid memory on the server. The core module of the client

is modified, so it can redirect requests across the two server

0 2000 4000 6000 8000 10000
Key ID

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

scrambled zipfian
zipfian

latest
hotspot

Fig. 3: CDF of the key space across different request pat-

tern distributions. Shows the probability for a key ID to be

requested throughout the workload.

instances.

Workloads. We further adapt the default YCSB workloads, so

that they can represent a broad range of request distributions

and data sizes of modern data serving application scenarios.

Table III summarizes the characteristics of the workloads

we define, together with representative use cases that cor-

respond to common workload patterns in the widely-used

social media platform, Facebook. The matching of Facebook

actions to request distributions and operation ratios is done

with respect to information provided by [19], [21]. Figure 3

visualizes the distributions included in the custom workloads.

The scrambled zipfian distribution contains some hot

(heavily accessed) keys scrambled across the key space,

whereas the zipfian maps these keys at the beginning of the

key range. Concerning data sizes, we try to capture both text

and photo use cases. Publicly available “social media cheat

sheets” [8], [15], include the sizes of photos in pixels and

size of text posts in character length for all widely used social

media platforms. We infer the size distributions in the average

case for specific data use cases, as depicted in Figure 4. We

limit the exploration to these use cases, and do not include

bigger data sizes, such as videos, due to restricted memory

capacity of our native testbed.

System Cost Baselines. Table II summarizes the performance

baselines in a hybrid memory system, the corresponding

memory capacity sizings, and the cost reduction factor. If

we assume that SlowMem is p times cheaper, per byte, than

FastMem, then R(p) will be the cost reduction factor of the

total memory system, according to the following model:

R(p) =
Hcost

Fcost
=

F × Fcost/byte + S × Scost/byte

C × Fcost/byte

R(p) =
F + (C − F)× p

C
, where 0 < p < 1

Throughout the paper we fix p = 0.2, based on price estimates

used in prior research [24]. In real usage scenarios, this price

factor can be derived from actual memory hardware cost, or

the pricing of Virtual Machine instances with a choice of

memory technology.

414

Workload Distribution Read:Write ratio Record Size Type Use Case
Trending hotspot 100:0 readonly thumbnail (≈100 KB) Read Facebook short Trending News.
News Feed latest 100:0 readonly thumbnail (≈100 KB) Read Facebook News Feed.
Timeline scrambled zipfian 100:0 readonly thumbnail (≈100 KB) Read Facebook user’s Timeline.
Edit Thumbnail scrambled zipfian 50:50 updateheavy thumbnail (≈100 KB) Edit Profile Photo - Add filter/frame.
Trending Preview hotspot 100:0 readonly thumbnail (≈100 KB)

text post (≈10 KB)
photo caption (≈1 KB)

Scroll through Facebook Trending News.
Preview the news photo thumbnail, caption
and news summary.

TABLE III: Custom YCSB workloads adapted to modern use case scenarios of social media platforms, capturing a broad range

of request distributions, operations ratio and size of data typically serviced by in-memory key-value stores. Number of keys is

10,000 and number of requests 100,000.

Fig. 4: CDF of common data sizes used across social media

platforms. Horizontal axis depicts size (Bytes) in logarithmic

scale.

III. MOTIVATION

The experimental analysis that follows aims to capture the

workload parameters that influence the performance of a key-

value store on a hybrid memory system, in order to highlight

the scope of potential memory cost reduction. Figure 5 shows

the behavior of the Redis client runtime performance as a

function of the memory cost, when increasing the FastMem to

SlowMem capacity ratio. We describe in more detail the ob-

servations regarding the parameters that influence application

performance of an in-memory key-value store.

Key distribution. Figure 5a shows that the throughput of

Redis is significantly improved when using FastMem, up to

40% compared to the case where all data is allocated in

SlowMem. Looking back to Figure 3 we can reason that the

throughput improvement of all workloads seems to follow their

corresponding key access distribution pattern, as indicated by

the estimate lines, that will be further explained in Section IV.

It is important to notice here that in workloads like trending
which have a small set of frequently accessed keys, there is a

potential of significantly reducing the memory cost in return

for trivial performance loss. For example, sizing FastMem

such that it only holds the hot keys will reduce the system’s

memory cost to be only 36% of the cost of using only

FastMem, in return for 31% throughput improvement from

the SlowMem-only case, and only 10% less throughput than

the ideal case of FastMem-only allocations. Therefore, the

knowledge of the access distribution across the key space, can

facilitate optimal sizing decisions, and thus enable significant

cost reduction for minimal performance degradation, depend-

ing on the workload.

Read:Write ratio. Similarly, Figure 5b shows the relationship

between performance and cost for different amounts of read

and write requests in the workload. We observe that write

heavy workloads, such as edit thumbnail are less im-

pacted by the heterogeneity of the memory subsytem, rather

than read heavy ones such as timeline. Read requests are

more likely to translate to an actual memory access, and thus

are more exposed to any latency slowdown of the memory.

In the context of our analysis, this observation shows the

importance of capturing and differentiating the write and read

requests of a workload.

Record size. Figure 5c shows the impact of the record

size on application performance. Big record sizes influence

performance in a much more significant way than small record

values (the knee of the line is bigger). This further shows that

in such workloads, where data of different granularities need

to be fetched, it is more important for the large records to be

allocated in FastMem, compared to small objects, which can

reside in SlowMem without impacting application runtime.

Takeaways. First, we observe that, when right-sizing the

memory components, there is scope to significantly reduce

the memory cost of a system while triggering minimal per-

formance slowdown, especially for workloads with small sets

of frequently accessed keys. Second, we see that application

performance is tightly coupled with the key access pattern,

the read:write ratio and record size. Therefore, knowledge of
these workload characteristics can facilitate the exploration
of performance and cost tradeoffs, when deciding about the

capacity ratio of a hybrid memory system.

IV. DESIGN AND IMPLEMENTATION

Design Motivation. The observations regarding workload

behavior on hybrid memory systems from Section III, and

the need to reduce the system’s memory cost given the

FastMem pricing references in Section I, make a case for

Mnemo. We argue that the presence of heterogeneous memory

components will open new opportunities for workloads and

platform operators to leverage a new cost-performance tradeoff

in terms of the sizing of the different memory capacities. With

that in mind, we design and build Mnemo– an application

profiling tool that can provide insights into this tradeoff

for data serving applications, an important class of memory

intensive workloads.

Mnemo Overview. Mnemo is an open-source, easy to setup

tool, designed for capacity sizing analysis of key value stores

on hybrid memory systems. It permits its users, application

or infrastructure operators, to understand the impact on cost

and performance from different distributions of a workload’s

415

20 28 36 44 52 60 68 76 84 92 100

% of FastMem-only Cost

0

10

20

30

40

T
h
ro
u
g
h
p
u
t
in
c
re
a
s
e
(%

)

trending

news feed

timeline

estimate

(a) Varying key distribution.

20 28 36 44 52 60 68 76 84 92 100

% of FastMem-only Cost

0

5

10

15

20

25

30

35

T
h
ro
u
g
h
p
u
t
in
c
re
a
s
e
(%

)

timeline

edit thumbnail

estimate

(b) Varying read:write request ratio.

20 28 36 44 52 60 68 76 84 92 100

% of FastMem-only Cost

0

10

20

30

40

T
h
ro
u
g
h
p
u
t
in
c
re
a
s
e
(%

)

Trending Preview

thumbnail

photo caption

text post

estimate

(c) Varying record size.

Fig. 5: Application performance of Redis for incremental FastMem to SlowMem capacity ratio (left to right). As the capacity

of FastMem increases, so does the memory cost (x-axis) as well as the application throughput (y-axis), compared to the case

of using only SlowMem (left bottom point). Reported values are the mean of multiple experiments runs. The solid blue line

corresponds to Mnemo’s performance estimate described in Section IV. We report the measurement variability through the

estimate’s accuracy in Section V.

memory capacity across different types of memory compo-

nents. The output are cost estimation curves, similar to the

graphs plotted via the measurements in Section III.

Mnemo does not require any application level modifications

and profiles the application quickly, as it does not perform fine-

grained execution monitoring. Instead, users are expected to

provide Mnemo with a target workload descriptor, comprised

of the workload features identified in Section III: key access

distribution and request type sequence for a given dataset.

In its simplest form, these parameters are obtained directly

by running the key-value store with a representative key

and request type sequence. Then, Mnemo executes the actual

workload on a physical hybrid memory system “as-is”. The

goal is to obtain real performance baselines corresponding to

the two extreme configurations – when all memory capacity is

allocated from FastMem vs. when only SlowMem capacity is

used. The two baselines establish the bounds for the tradeoff

estimation curve.

Next, Mnemo relies on the estimation models, described

later in this section, to quickly calculate an estimate of

the performance degradation for increasing capacity ratio of

FastMem compared to SlowMem. Mnemo does not answer the

question of what is the total capacity needed for a workload;

that is an orthogonal question, and Mnemo uses a fixed total

capacity to be the dataset size of the key-value store. The

generated estimate enables users to choose the exact capacity

sizing of the hybrid memory on the server side, at a key

size granularity, that will enable cost efficiency and desirable

performance.

Design Principles. Mnemo follows techniques that are widely-

used in profiling tools, such as establishing performance

baselines via workload execution and having analytical models

for performance estimation. However, Mnemo focuses on

delivering low overhead calculations, so as to provide users

with quick and accurate cost-benefit trade-offs. Section V

includes detailed comparison of Mnemo’s design choices with

respect to the profiling overhead.

Figure 5a hints that the application performance trendline

follows the request distribution. Mnemo builds on that ob-

servation and given the request pattern information makes

perfromance predictions following a very simple model. This

model produces an estimate of the workload’s performance

based on the intuitive observation that the total runtime will be

the product of the number of pending read and write requests

with the average service time of read and write requests by

the data store, for a given key tiering across FastMem and

SlowMem. Thus, throughput (requests per second) will be

the runtime divided by the total number of requests. For

this model to work, Mnemo requires only two things: a-

priori knowledge (or description) of the workload, and real

performance baselines for the average read and write time.

In Section V we see how such a simple design and light-

weight implementation can provide almost perfect estimation

accuracy of less than 0.1% median error.

Mnemo Architecture. Figure 6 shows a detailed representa-

tion of the software components of Mnemo, and the data flow

through them:

1. The Sensitivity Engine is a customized YCSB client,

which executes the actual workload itself, issuing a user-

provided sequence of keys and request types. It determines

the performance baselines for the best case, where all

data is in FastMem, and worst case, where all data is in

SlowMem, including average total runtime and average read

and write request response times, as shown in the data flow

of Figure 6.

2. The Pattern Engine analyzes the request access pattern

of the workload, and establishes a relationship between the

keys and requests Req(keys).
3. The Estimate Engine takes as input the performance

baselines from the Sensitivity Engine, the access pattern

from the Pattern Engine, and the memory cost reduction

factor p from the Mnemo user. Mnemo calculates the work-

416

Fig. 6: Data flow and functionality description of the software

components of Mnemo.

load’s throughput for incremental tiering of the key space

across FastMem and SlowMem, according to the following

equation. It then correlates the throughput to the system

cost, by calculating the cost reduction factor based on the

FastMem to SlowMem capacity ratio that corresponds to

each key tiering, following the cost model described in

Section II.

Throughput =
ReadT ime+WriteT ime

Requests

ReadT ime = reads× (SlowReadT ime− FastReadT ime)

WriteT ime = writes× (SlowWriteT ime− FastWriteT ime)

4. The Placement Engine takes the selected key tiering,

that satisfies the user’s performance to cost trade-offs, and

statically places the key-value pairs to the corresponding

FastServer and SlowServer, prior to the actual workload

execution. At this step, the user needs to provide Mnemo

with the actual dataset and not just the initial workload de-

scriptor. However, this step is optional and can be performed

by the user itself. Either way, Mnemo provides a static key

allocation, with no support for dynamic data migration.

It is important to highlight the fact that server-side parameters,

such as the server thread parallelism, hardware cache and

prefetching efficiency, or the network speed, that define the

processing speed of the key-value store on the given CPU,

memory and network, are all incorporated into the average

request response time (ReadT ime,WriteT ime) that the Sen-

sitivity Engine extracts by actually executing the workload.

Therefore, our model, even though it is simple enough, it

is able to capture the needed information and generate a

performance estimate with very strong accuracy.

Fig. 7: Pattern Engine of MnemoT. Orders keys for prioritized

FastMem allocations, similar to existing tiering solutions.

The rest components of MnemoT are exactly the same with

Mnemo.

Interfacing with Mnemo. Mnemo users need to provide as

inputs the target workload, in a form of a key sequence and the

corresponding request type, identifiers for the key-value store

servers, and a cost reduction factor p of the target SlowMem

compared to FastMem. As output, Mnemo will generate a

text file in csv format with three columns, as depicted in

Figure 6, as well as a graph representation of the estimate,

as the solid blue line in Figure 5. Each row contains a key

identifier, the estimated performance and cost reduction factor,

when FastMem will service all previous keys in the file and

have capacity equal to the sum of their corresponding values,

whereas the rest of the keys, that follow in the output lines, will

be attributed to SlowMem. The user of Mnemo should choose

the line that satisfies its performance requirements and price

allowance and then the Placement Engine will appropriately

populate the FastMem and SlowMem.

Key-Value Store Optimized Tiering Extension. MnemoT
is an extended version of Mnemo, with the exact same

components and functionality depicted in Figure 6. MnemoT

features a more robust Pattern Engine that analyzes the request

access pattern and produces a priority ordering of the keys

for FastMem allocations, using the tiering methodology that

existing solutions use [24], [30], [32], [33]. In more detail,

the Pattern Engine now takes as an input the key-value sizes

and associates each key with a placement weight. The weight

is the number of accesses the key receives, divided by the

size of the key-value pair. In this way, keys that are heavily

accessed (hot keys) are prioritized for DRAM allocations,

as well as small keys also get an advantage, so that more

key-value pairs can be satisfied by FastMem until capacity

is full. We adopt his methodology, since it is predominantly

used across most of the affore-mentioned solutions, because

it provides optimal performance in hybrid memory systems.

Some of the existing solutions map the tiering problem to the

0/1 knapsack, where the items are the key-value pairs, together

with their calculated weights and sizes, and the size of the

knapsacks are the fixed capacities. Figure 7 summarizes the

input, output and internal functional of the extended Pattern

Engine that MnemoT features. Section V contains detailed

comparison of this tiering methodology compared to existing

solutions, with respect to the profiling overhead.

417

V. EVALUATION

We evaluate Mnemo on the same testbed described in Sec-

tion II, using the workloads summarized in Table III across the

three currently most rated in-memory key-value stores, Redis,

DynamoDB and Memcached. In Subsection V-A our goal is

to evaluate the utility of Mnemo, regarding the performance

estimate accuracy, the scope of memory cost reduction and

the practical use of our tool. Then, in Subsection V-B, we

compare the design choices of Mnemo and MnemoT with

existing profiling solutions, focusing on the fact that it provides

low overhead and fast calculations.

A. Mnemo’s Utility

Estimate Accuracy. Figure 5 includes the corresponding

estimate curves for Redis. To justify the accuracy of Mnemo

we keep track of the percentage error r−e
r × 100% between

the real performance points r and their corresponding estimate

e, across all experiments. We repeated the experiments with

the workloads defined in Table III for the three currently

most highly rated in-memory key-value stores [5], Redis,

DynamoDB and Memcached. The data distribution of the error

values for each key-value store is presented in Figure 8a, in

the form of boxplots. The strong accuracy of 0.07% median

error highlights that the usage of real performance baselines

and the knowledge of the actual request access pattern, put

together with a simple model, can efficiently and quickly

estimate performance.

Key-value store Comparison. Figure 8b shows the applica-

tion performance across DynamoDB, Redis and Memcached

for the Trending workload. We choose to visualize these

results for brevity and highlight the scope at which Mnemo

can be useful. First, this is a very representative class of

workloads across all social media platforms and generally

cloud based data serving applications, where a certain subset

of data is heavily requested for a certain period of time.

More so, all workloads can be profiled in a way that orders

keys with respect to request counts, thus transformed to a

Trending version. Mnemo is able to capture this subset of

data that is absolutely necessary to be allocated in FastMem,

so as to satisfy any performance guarantees. This is what will

determine the capacity ratio of FastMem to SlowMem and

thus the overall memory cost. In such workloads, there is

potential for huge cost reductions when the set of hot data

is small compared to the whole dataset, as shown in Figure 9

and described later on.

Second, we observe that the internals of a key-value store

and the request processing rates it can achieve, set the degree

of overall sensitivity to execution on a hybrid memory system.

In our native experimental setup we observe that DynamoDB

is severely impacted when allocating data in SlowMem,

whereas Memcached barely gets influenced. Although it is

out of the scope of this paper to understand the reasons of

this sensitivity variation, what’s important is that Mnemo can

capture this behavior, through the performance baselines it

acquires. In this way, Mnemo can shed light to whether the

user even needs to be concerned about application performance

over hybrid memory or not.

Third, as far as the performance metrics are concerned,

Mnemo makes perfromance estimates in terms of throughput

(operations / seconds). Regarding latency, Mnemo estimates

the Average latency to service a request from the client

perspective, based on the performance baseline it acquires

and the simple estimation model described in Section IV.

The estimate is extremely accurate, as depicted in Figure 8c.

However, regarding the tail latency of the requests, Mnemo

does not produce any estimate, since the simple analytical

model it uses is not sufficient to capture the variabilities of

the tail latencies. We report those in Figures 8d, 8e.

Estimate of MnemoT. The Pattern Engine of MnemoT ana-

lyzes the request frequency of the key-value pairs and priotizes

them for FastMem allocations, similarly to existing solutions,

as described in Section IV. In this way hot keys will be the

first ones to be considered for FastMem allocations. Looking

back at Figure 3 this is similar to identifying the hot keys of

scrambled zipfian distribution, that are spread across

the key space, and prioritizing them in the beginning of the

key space, converting the distribution to look like zipfian
.

Similarly, the Pattern Engine of MnemoT identifies the hot

keys and transforms the input distribution into a zipfian
-

like one. Figure 8f shows the performance estimate of Mnemo

vs MnemoT, proving that the estimate model is also accurate

for the new ordering of keys.

It is important to note that existing tiering solutions, work

over fixed memory capacities, thus if used they would provide

only 1 point of the curve that Mnemo produces. For example,

let’s assume we have a 70:30 FastMem:SlowMem capacity ra-

tio (76% of FastMem-only cost). Then, data tiering (MnemoT)

will provide almost 6% more throughput. However, the tiered

throughput is only 7% less than the optimal one, when only

FastMem is used. The application performance guarantees

may allow for 10% less throughput compared to FastMem-

only, which can be achieved with 50:50 FastMem:SlowMem

and only 52% of FastMem-only cost. MnemoT facilitates

this observation for significant cost reduction, that existing

tiering solutions cannot provide, unless the user manually

runs them across variable capacity ratios. MnemoT does that

automatically and quickly and allows users to observe not only

the performance benefits through tiering, but also to find the

sweet spot between cost and performance.

Memory Cost Efficiency. Figure 9 shows the scope of the

cost reduction Mnemo is able to provide, while allowing

application performance degradation to be 10% from the ideal

case where all data could reside in FastMem. We choose

to represent the 10% performance degration SLO, as it is

commonly used in other research on optimizing performance

and resource efficiency [27], [31], [34]. The lower the cost

reduction is, the more cost savings a user can obtain. The

minimum threshold in this experiment corresponds to 20%

418

memcached redis dynamodb overall

−10

0

10

E
rr
o
r
(%

)

0.66%
-0.59% 0.06% 0.07%

Estimate Accuracy

(a) Estimate Accuracy.

20 28 36 44 52 60 68 76 84 92 100

% of FastMem-only Cost

0

50

100

150

200

T
h
ro
u
g
h
p
u
t
in
c
re
a
s
e
(%

)

Trending Workload

dynamodb

redis

memcached

estimate

(b) Estimate across key-value stores.

20 28 36 44 52 60 68 76 84 92 100

% of FastMem-only Cost

0

50

100

150

200

L
a
te
n
c
y
d
e
c
re
a
s
e
(%

)

Average Latency

dynamodb

redis

estimate

memcached

(c) Average Latency (Trending Workload).

20 28 36 44 52 60 68 76 84 92 100

% of FastMem-only Cost

0

50

100

150

200

L
a
te
n
c
y
d
e
c
re
a
s
e
(%

)

95 Tail Latency

dynamodb

redis

memcached

(d) 95 Tail Latency (Trending Workload).

20 28 36 44 52 60 68 76 84 92 100

% of FastMem-only Cost

0

25

50

75

100

125

150

175

L
a
te
n
c
y
d
e
c
re
a
s
e
(%

)

99 Tail Latency

dynamodb

redis

memcached

(e) 99 Tail Latency (Trending Workload).

20 28 36 44 52 60 68 76 84 92 100

% of FastMem-only Cost

0

5

10

15

20

25

T
h
ro
u
g
h
p
u
t
in
c
re
a
s
e
(%

)

Timeline Workload

mnemoT

mnemo

estimate

(f) Estimates of Mnemo vs MnemoT.

Fig. 8: Evaluation of Mnemo’s estimate with respect to the overall accuracy across key-value stores.

which is determined by the assumption that SlowMem will be

p = 0.2 times the cost of FastMem.

First, we observe that Memcached is overall non-sensitive

to execution over SlowMem, allowing for maximum cost

savings, where it runs solely on SlowMem, without affecting

the application more that 10%.

Redis shows more interesting results, and highlights the

contribution of the workload access pattern to the scope of

possible cost reduction. More specifically, workloads in the

Trending category, which contain a small subset of hot

keys, can perform with an overall slowdown of 10%, while

utilizing only the absolutely necessary amount of FastMem

to host the hot keys. This can reduce the cost close to the

baseline of 20% of the (expensive) FastMem-only cost. On the

other side, News Feed workloads, really depend on the latest

accessed data to reside in FastMem, thus can only allow very

small portions of SlowMem to be used, and barely present any

cost reduction opportunities. Next, comparing the Timeline
and Edit Thumbnail workloads that follow a more regular

access pattern, the latter benefits from the heavy amount of

writes, that are not affected by SlowMem, and allow for more

cost savings compared to read heavy workloads.

Finally, we observe that DynamoDB is the most impacted

when executing over SlowMem, tolerating only small amounts

of SlowMem capacity to be used in order to respect the

performance guarantees. However, even for DynamoDB, for

certain access patterns, we observe an opportunity to reduce

the memory cost by 20-30%. Given the trend toward growing

in-memory data stores, and memory capcities in the 100s

of GBs and beyond, these cost reductions still represent a

meaningful fraction of the infrastructure cost.

Trending News
Feed

Timeline Edit
Thumbnail

Trending
Caption

Trending
Post

0

20

40

60

80

100

C
o
s
t
R
e
d
u
c
ti
o
n
(%

)

memcached redis dynamodb

Fig. 9: Cost reduction across all workloads and key-value

stores for performance that adheres to 10% permissible ap-

plication slowdown. The lower the cost the better, with a

threshold of 20%, which is the assumed relative cost of

using only SlowMem compared to FastMem. Cost reduction

is extrapolated using the formula in Section II.

Workload downsampling. Mnemo requires a-priori knowl-

edge about the workload access pattern, and its estimation

model depends on this to achieve its accuracy. In real use case

scenarios, this knowledge may be restricted, either due to lack

of access to the actual workload or due to their significant size,

consisting of millions of requests. Thus, the user may either

create a synthetic workload with similar request distribution or

downsize a real workload via sampling the number of requests.

For this reason, we downsize our workloads via random

sampling, where we choose to evict from the workload random

key requests at fixed intervals. This reduces the number of

requests issued, but ensures that the characteristics of the

original key distribution are preserved. Our experiments show

that Mnemo still produces an accurate performance estimate

and that the downsized workload’s performance is affected

419

Profiling Step MnemoT Other Solutions Lowest Overhead?
Input Preparation Collect the workload (key access pattern +

key-value pair sizes)
Collect the workload (key access pattern) & instrument the
server code with custom API [24], [30], [32]

MnemoT

Performance
Baselines

Actual Execution of Workload with
FastMem-only and SlowMem-only data
allocations.

Obtaining the FastMem and SlowMem access latency through
prior microbenchmark execution [24]. Actual workload exe-
cution of one performance baseline and inference of the other
one, through a pre-trained Machine Learning Model [33].

MnemoT

Tiering Weight Calculation on a key-value pair
granularity using just an input description
of the key-value pair sizes and request dis-
tribution.

Weight Calculation on a per server’s internal data structure
level (e.g. slab) using low-level memory access instrumenta-
tion [24], [30] or sampling low-level architecture counters
(e.g. hardware cache misses) [32], [33]

MnemoT

TABLE IV: Comparison of the profiling overheads between MnemoT and existing tiering solutions.

in the same degree as the original workload. In this way,

Mnemo can establish the same performance baselines as with

the full-sized workload. Then, together with the accurate

performance estimate that follows the request distribution,

Mnemo ensures to deliver cost-to-performance trade-offs that

will be applicable in the full-sized workload.

Target applications. Mnemo can run against any key-value

store, as a black box, as its Sensitivity Engine includes a

customized version of YCSB that can execute against popular

data stores. Mnemo follows a very simple performance estima-

tion model, which proves to be extremely accurate specifically

for in-memory key-value data stores. We do not argue that

the estimation model will work for any data store, especially

those engaging storage components. Rather, data accesses that

go through the storage subsystem, need to be appropriately

studied and modeled, in order to capture the relevant impact

to the application runtime.

B. Profiling Overhead Comparison

MnemoT’s profiling overhead breaks down into the time

taken for the user to prepare the input, for the Sensitivity

Engine to extract the performance baselines and the Pattern

Engine to analyze the key access pattern and calculate the

tiering ordering. The Estimate Engine runs a simple analytical

model, so its execution is instantaneous. Table IV summarizes

the overhead comparison with existing profiling solutions, that

we next discuss in detail.

First, as far as the input preparation is concerned, as with

any application profiling tool, the user needs to provide the

workload itself. Next, most profiling tools need to instrument

the application source code, in order to facilitate the moni-

toring of the metrics for their analysis. Tiering profiling tools

need to keep track of the memory accesses that correspond

to the application’s data structures, thus usually expose a

custom memory allocation API to the user [24], [30], [32].

In this way, the user needs to spend significant amount of

time understanding the internal application functionality, so

as to properly utilize the custom API. In contrast, MnemoT

treats the key-value store as a black box and requires no

modification to its source code or understanding of its internal

data structures. Thus, MnemoT requires only the workload

description as any profiling tool does.

Next, regarding the time to collect performance baselines,

MnemoT chooses to actually execute the workload ‘as-is’

in the two extreme cases, where all data is allocated in

FastMem and similarly in SlowMem. This methodology, of

establishing workload characteristics requirements during a

brief pre-deployment stage, is very common for tools that

are built to satisfy goals and performance concerns, such as

effects of sharing memory (DRAM), CPUs or other resources

for collocated workloads [22], [28], [35], [36]. In the hybrid

memory system domain, X-Mem [24] runs microbenchmarks

in order to get the latency of the different memory components

across different access patterns. The authors of Tahoe [33]

execute the workload itself and obtain the all-in-SlowMem

performance baseline and choose to train Machine Learning

models in order to infer the all-in-FastMem baseline. Although

they claim that the training and inference time is trivial,

the time to collect the training data, via workload execution

and monitoring of hardware level counters, is significant. In

contrast, by using both performance baselines, Mnemo results

in a much faster and a far less complicated procedure.

Finally, concerning the tiering calculations, existing solu-

tions involve rigorous application profiling [24], [30], [32],

[33], in order to determine the access frequency of the ap-

plication’s data structures. They utilize binary instrumentation

tools, like Intel’s Pin [12], or low-level performance counters

using Precise Event- Based Sampling from Intel or Instruction-

based Sampling from AMD in order to identify the various

data structures and keep track of every individual memory

access in order to then calculate the individual weights and

order the data objects for FastMem allocations. The utilization

of such tools as part of the profiling solution, can add up to

40x overhead, as per the authors of X-Mem [24]. However,

in the case of key-value stores, we can quickly calculate the

allocation weights on a key-value pair granularity, as the Pat-

tern Engine of MnemoT does. For this purpose, we only need

a description of the key and value sizes, not the actual data,

compared to existing solutions. In this way, the calculation

of the object weights can be instantaneous, with no need for

low-level memory access monitoring. Figure 8f validates that

this methodology can still produce good tiering propositions

and Mnemo’s estimate is still extremely accurate. Therefore,

MnemoT still follow’s the predominant methodologies in the

calculation of the allocation ordering, but can do so at zero

overhead compared to existing profiling solutions.

Overall, MnemoT with its design choices is able to deliver

fast performance estimations with minimal user effort.

420

VI. SUMMARY

This paper presents the design and implementation of

Mnemo, an open-source key-value store application profiling

tool that aims to provide users with a cost-benefit presentation

of the different sizing configurations of a hybrid memory

subsystem. Motivated by the potential to drastically reduce the

system’s memory cost with minimal performance slowdown

for workloads with frequently accessed data, Mnemo is able

to automate the process of finding the sweet spot between

cost efficiency and ensured performance guarantees. It does so

by accurately estimating the application runtime degradation

across incremental sizing of FastMem compared to SlowMem,

for fixed overall capacity. Summarizing its impact, Mnemo is

able to estimate performance with only 0.07% median error

across Redis, Memcached and DynamoDB and shows the

potential to reduce the memory cost down to only 20% of the

cost of a DRAM-only system, while respecting performance

guarantees of 10% application slowdown.

REFERENCES

[1] Intel confirms Optane DIMMs for late 2018 - The Tech Re-
port. https://techreport.com/news/32841/intel-confirms-optane-dimms-
for-late-2018, Nov 2017.

[2] Amazon DynamoDB - NoSQL Cloud Database Service.
https://aws.amazon.com/dynamodb/, May 2018.

[3] Amazon Elasticache Pricing. https://aws.amazon.com/elasticache/pricing/,
November 2018.

[4] Available first on Google Cloud: Intel Optane DC Persistent Mem-
ory. https://cloud.google.com/blog/topics/partners/available-first-on-
google-cloud-intel-optane-dc-persistent-memory, November 2018.

[5] DB-Engines. Ranking - popularity ranking of key-value store. https://db-
engines.com/en/ranking/key-value+store, May 2018.

[6] Google Compute Engine Pricing. https://cloud.google.com/compute/pricing,
November 2018.

[7] Intel Optane DC Persistent Memory.
https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html, November 2018.

[8] Know Your Limit: The Ideal Length of Every Social Media
Post. https://sproutsocial.com/insights/social-media-character-counter/,
May 2018.

[9] Legion Overview - Legion Programming System.
http://legion.stanford.edu/overview/, Feb 2018.

[10] Memcached - a distributed memory object caching system.
https://memcached.org/, May 2018.

[11] Microsoft Azure Linux Virtual Machines Pricing.
https://azure.microsoft.com/en-us/pricing/details/virtual-
machines/linux/, November 2018.

[12] Pin - A Dynamic Binary Instrumentation Tool.
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool, November 2018.

[13] Redis. https://redis.io/, May 2018.
[14] Setting Up DynamoDB Local (Downloadable Ver-

sion). https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/DynamoDBLocal.html, November 2018.

[15] Social Media Cheat Sheet 2018: Must-Have Image Sizes!
https://louisem.com/2852/social-media-cheat-sheet-sizes, May 2018.

[16] System Memory at a Fraction of the DRAM Cost.
https://www.intel.com/content/dam/www/public/us/en/documents/brief/intel-

ssd-software-defined-memory-with-vm.pdf, 2018.
[17] What Happens in an Internet Minute in 2018?

http://www.visualcapitalist.com/internet-minute-2018/, November
2018.

[18] H. Amur, W. Richter, D. G. Andersen, M. Kaminsky, K. Schwan,
A. Balachandran, and E. Zawadzki. Memory-efficient groupby-aggregate
using compressed buffer trees. In Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13, pages 18:1–18:16, New
York, NY, USA, 2013. ACM.

[19] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Work-
load analysis of a large-scale key-value store. SIGMETRICS Perform.
Eval. Rev., 40(1):53–64, June 2012.

[20] C.-C. Chou, A. Jaleel, and M. Qureshi. BATMAN: Maximizing Band-
width Utilization for Hybrid Memory Systems. In Technical Report,
TR-CARET-2015-01 (March 9, 2015), 2015.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154,
New York, NY, USA, 2010. ACM.

[22] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for
heterogeneous datacenters. SIGPLAN Not., 48(4):77–88, Mar. 2013.

[23] T. D. Doudali and A. Gavrilovska. Comerge: Toward efficient data
placement in shared heterogeneous memory systems. In Proceedings of
the International Symposium on Memory Systems, MEMSYS ’17, pages
251–261, New York, NY, USA, 2017. ACM.

[24] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan. Data tiering in heterogeneous memory
systems. In Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, pages 15:1–15:16, New York, NY,
USA, 2016. ACM.

[25] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan. HeteroOS - OS
Design for Heterogeneous Memory Management in Datacenter. In 44th
International Symposium on Computer Architecture (ISCA’17), Toronto,
ON, 2017.

[26] S. Kannan, A. Gavrilovska, and K. Schwan. pvm: Persistent virtual
memory for efficient capacity scaling and object storage. In Proceedings
of the Eleventh European Conference on Computer Systems, EuroSys
’16, pages 13:1–13:16, New York, NY, USA, 2016. ACM.

[27] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.
Heracles: Improving resource efficiency at scale. In Proceedings of the
42Nd Annual International Symposium on Computer Architecture, ISCA
’15, pages 450–462, New York, NY, USA, 2015. ACM.

[28] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa. Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44, pages 248–
259, New York, NY, USA, 2011. ACM.

[29] O. Mutlu. Main memory scaling: Challenges and solution directions. In
More than Moore Technologies for Next Generation Computer Design,
chapter 6, pages 127–153. Springer, 2015. Invited Book Chapter.

[30] D. Shen, X. Liu, and F. X. Lin. Characterizing emerging heterogeneous
memory. In Proceedings of the 2016 ACM SIGPLAN International
Symposium on Memory Management, ISMM 2016, pages 13–23, New
York, NY, USA, 2016. ACM.

[31] P. Tembey, A. Gavrilovska, and K. Schwan. Merlin: Application- and
platform-aware resource allocation in consolidated server systems. In
Proceedings of the ACM Symposium on Cloud Computing, SOCC ’14,
pages 14:1–14:14, New York, NY, USA, 2014. ACM.

[32] K. Wu, Y. Huang, and D. Li. Unimem: Runtime data managementon
non-volatile memory-based heterogeneous main memory. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, pages 58:1–58:14, New York,
NY, USA, 2017. ACM.

[33] K. Wu, J. Ren, and D. Li. Runtime data management on non-volatile
memory-based heterogeneous memory for task-parallel programs. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC ’18, pages 31:1–
31:13, Piscataway, NJ, USA, 2018. IEEE Press.

[34] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise
online qos management for increased utilization in warehouse scale
computers. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 607–618, New York, NY,
USA, 2013. ACM.

[35] C. Zhang. DeepDive: A Data Management System for Automatic
Knowledge Base Construction. PhD thesis, University of Wisconsin-
Madison, 2015.

[36] Y. Zhang, D. Meisner, J. Mars, and L. Tang. Treadmill: Attributing
the source of tail latency through precise load testing and statistical
inference. In Proceedings of the 43rd International Symposium on
Computer Architecture, ISCA ’16, pages 456–468, Piscataway, NJ, USA,
2016. IEEE Press.

421

