
Instructor: Thaleia Dimitra Doudali

MLArchSys
Seminar

Assistant Professor at IMDEA Software Institute

Universidad Politécnica de Madrid (UPM)

March 2023

Lecture 2 of the

2 / 38

Outline of Today’s Lecture Systems
Software

Machine
Learning

ML for Systems

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

LSTMs

for Cache Prefetching

Today’s Paper:

3 / 38

Outline of Today’s Lecture Systems
Software

Machine
Learning

ML for Systems

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

LSTMs

for Cache Prefetching

Today’s Paper:

4 / 38

Cache Hierarchy

Memory Access Trace

0x40001ee0: R 0xbfffe798
0x40001efd: W 0xbfffe7d4
0x40001f09: W 0xbfffe7d8
0x40001f20: W 0xbfffe864
0x40001f20: W 0xbfffe868

0x40001f20:

W

0xbfffe868

Program Counter (PC)

Access Type (Read or Write)

Memory Address of the data (hex number)

L1

L2 Cache

L3 Cache

Main Memory

1. Cache Placement Policy
2. Cache Eviction Policy

e.g., direct-mapped
e.g., LRU, LFU

Hardware

Data is allocated in memory. When accessed from memory, it gets cached.

5 / 38

Data Prefetching

What to Prefetch?

Learn various patterns.
• Sequential: A, A+1, A+2..
• Strided: A, A+4, A+8..
• Correlated: A, B, C, A, D, B, A
• More complex ones..

When to Prefetch?
• On every data access.

• Overheads?
• On every cache miss.

• Patterns filtered by cache.
• On prefetching hits.

Where to put the prefetched data?

• In the cache.
• In separate buffers.

• Avoid cache pollution.

In addition to caching upon memory accesses, hardware prefetches data from memory into the cache, as well.

Cache

Main Memory

1. Prefetch Data

Hardware

2. Cache Placement Policy
3. Cache Eviction Policy

It’s a prediction problem!
Predict which data will be accessed
in the future and cache them.

6 / 38

Next Line (1) + Stride Prefetchers (2)

Next Line Prefetcher

Prefetch data one after the other A, A+1, A+2Α Α+1 A+2 A+3
Data in Memory

Very easy to implement.

Works only on sequential patterns.

Strided patterns are frequent.

Need a mechanism to detect
length of the stride.

Stride Prefetcher

Matrix allocated in memory.

stride

7 / 38

Stream Prefetcher (3)

Cache

Main Memory

…

Stream buffers

A
A+1
A+2
A+3

2. Check buffer “heads”.

3. Found A: put in cache, prefetch A+4 into buffer.

4. Not Found A: prefetch from memory a new stream buffer (A – A+3).
LRU replacement of buffers.

1. Cache miss
A

Buffers do not “pollute” the cache.

Extra hardware overhead
(number and length of buffers).

8 / 38

Correlation Prefetcher (4)

Miss C - Prefetch A D

Memory Accesses: A B C D C A C D B C A

Tag 1st time 2nd time

A C B

B C

C A D

D B C

History Table

Records the address that was next to “tag” the past 2 times.

Edges: Probability

Prefetches data based on history of memory accesses.

Captures variety of patterns.

Limited size, possible conflicts
due to indexing.

9 / 38

Global History Buffer - GHB (5)

Memory Accesses: A B C D C A C D B C A

Miss A - Prefetch C B

Decouples table indexes from the storage of prefetch-related history.

Captures more complete history.

Multiple table accesses.

Some version of GHB is mostly
used in modern architectures!

10 / 38

Evaluation Metrics

True
Positive

False
Positive

False
Negative

True
Negative

Positive / Hit Negative / Miss

Positive /
Prefetched

Negative /
Not
Prefetched

Real / Cache

Prediction

Accuracy =
True Positives

(True + False) (Positives + Negatives)

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

Timeliness = How early data is prefetched, versus when it is actually accessed, if at all.

11 / 38

Prefetching = Forecasting Time Series

Prefetching is a prediction problem = Forecasting future values of data that are ordered in time.

Timestamp1 0x40001ee0: R 0xbfffe798
Timestamp2 0x40001efd: W 0xbfffe7d4
Timestamp3 0x40001f09: W 0xbfffe7d8
Timestamp4 0x40001f20: W 0xbfffe864
Timestamp5 0x40001f20: W 0xbfffe868

= Time series of accesses to memory addresses.

Sequential strides Triangular Traversal Sparse Tensors Cycles of Randomness

Time

M
em

or
y

Ad
dr

es
s

12 / 38

Outline of Today’s Lecture Systems
Software

Machine
Learning

ML for Systems

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

LSTMs

for Cache Prefetching

Today’s Paper:

13 / 38

ML for Forecasting Time Series

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

In the context of this lecture’s paper, LSTM is a solid box, no need to understand the internals.

We’ll focus on the inputs and outputs: what exactly it learns, what exactly it predicts.

LSTM-based
Deep Neural Networkinput output

… but since you’re curious let’s see it’s internal functionality.

14 / 38

ML for Forecasting Time Series

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

RNNs use information from many time steps 𝑋!, 𝑋" . . 𝑋# to make a prediction ℎ#

E.g., the clouds are in the .. sky.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

15 / 38

ML for Forecasting Time Series

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

RNNs struggle to capture long-term dependencies.

E.g., I grew up in France, I speak fluent .. French.
LSTMs to the rescue!

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

16 / 38

ML for Forecasting Time Series

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

RNNs

1 internal layer

LSTMs

VS

4 interacting internal layers

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

17 / 38

Take ℎ!"# and 𝑥! and decide whether to keep (= 1), forget (= 0),
or remember part of (< 1).

σ = sigmoid layer
𝑓! = “forget gate” layer

ML for Forecasting Time Series

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

Cell State 𝐶! can change through pointwise operations.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

18 / 38

ML for Forecasting Time Series

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

= “input gate” layer = which values to update.

What new information are we storing in the cell state?

= new candidate values to add to the cell state.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

19 / 38

ML for Forecasting Time Series

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

Update the old state 𝐶!"# with the new one 𝐶!.

forget add

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

20 / 38

ML for Forecasting Time Series

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

Output ℎ! is a filtered version of 𝐶!.

= “output gate” layer.

= push between -1..1, to output part of the cell state.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

21 / 38

Outline of Today’s Lecture Systems
Software

Machine
Learning

ML for Systems

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

LSTMs

for Cache Prefetching

Today’s Paper:

22 / 38

Learning Memory Access Patterns

LSTM-based
Deep Neural Network

input output

(0x40001f20, 0xbfffe864) 0xbfffe868

Address at time 𝑡$%"

0x40001ee0: R 0xbfffe798
0x40001efd: W 0xbfffe7d4
0x40001f09: W 0xbfffe7d8
0x40001f20: W 0xbfffe864
0x40001f20: W 0xbfffe868

The data available for ML training is a memory access trace:

PC address

(PC, Adrress) at time 𝑡$

0xbfffe868

Possible values = 2&'
64-bit binary number

Normalizing that to [0, 1]
leads to information loss.

Size of Trace: O(100M)

Huge.. and extremely sparce.
Only O(10M) unique addresses.

Don’t learn address numbers!

23 / 38

Prefetching as Classification

Learn address deltas, not raw addresses!

Memory footprint is sparse means that a relatively small, and consistent set of addresses is used.

The number of uniquely occurring deltas is often orders of magnitude smaller than uniquely occurring addresses.

LSTM-based
Deep Neural Network

input

PC 𝑡!, Address Delta(𝑡!, 𝑡!"#)

output
Address Delta(𝑡!$#, 𝑡!)

1. Go through the memory access trace.

2. Compute address deltas for every (𝑡$, 𝑡$(").

3. Keep the deltas that appear at least 10 times.

4. Create a “vocabulary” of these unique deltas.

Prefetching as Classification =
Prediction will be one of these deltas.

24 / 38

Approach 1: Embedding LSTM

1. Input

PC 𝑡!, Address Delta(𝑡!, 𝑡!"#)

2. Concatenated embeddings

0 0 0 1 0 0 0

3. Output

Vector length = X
X = number of unique deltas

1 such vector per delta.

“one hot encoding”

With Classification, the LSTM predicts
probability for each of the X vectors.

4. Prefetching Action

Prefetch the top-10 predictions,
at each timestep 𝑡$.

25 / 38

Approach 2: Clustering + LSTM (1)

Focus on local context, e.g., data structures are stored in contiguous memory address and accessed repeatedly.

1. Run k-means to cluster the addresses.

2. Deltas are computed within each cluster.

Smaller “vocabulary” of unique deltas.

Potentially missing the “global” context.

26 / 38

Approach 2: Clustering + LSTM (2)

1. Train an LSTM per cluster of deltas.

2. Add cluster ID as an extra feature.

3. Tie weights.

Reduced model size, faster training.

1 extra pre-processing step for clustering.

27 / 38

Outline of Today’s Lecture Systems
Software

Machine
Learning

ML for Systems

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

LSTMs

for Cache Prefetching

Today’s Paper:

28 / 38

Evaluation Metrics (1)

Precision =
True Positives

True Positives + False Positives
True

Positive
False

Positive

False
Negative

True
Negative Precision-at-10 =

Correct Delta Predictions

All Real Deltas

Correct Prediction, if the real delta is one of the 10 predictions.

Positive / Hit Negative / Miss

Positive /
Prefetched

Negative /
Not
Prefetched

Real / Cache

Prediction

29 / 38

Evaluation Metrics (2)

True
Positive

False
Positive

False
Negative

True
Negative Recall-at-10 =

Unique Predicted Deltas

All Predicted Deltas

Recall =
True Positives

True Positives + False Negatives

Records all 10 predicted deltas.
Quantifies the % of the “vocabulary” that could be predicted.

Positive / Hit Negative / Miss

Positive /
Prefetched

Negative /
Not
Prefetched

Real / Cache

Prediction

30 / 38

Evaluation Baselines

Cache

Main Memory

…

10 Stream buffers

A

A+1

A+2

A+3

Stream Prefetcher Global History Buffer (GHB) Embedding LSTM Clustering LSTM

31 / 38

Evaluation (1)

The higher
the better

LSTM models achieve high precision, especially for complex patterns (e.g., websearch).
No great difference between the embedding and clustering LSTM.

Remember..
They assume precision-at-10.

32 / 38

Evaluation

The higher
the better

Stream prefetcher achieves highest recall, due to its dynamic vocabulary (set of deltas).
Clustering LSTM better than embedding, because creates better vocabulary (set of deltas).

33 / 38

Sensitivity to Feature Selection

Embedding LSTM

What happens when using
only PC or Deltas as input features. For precision, only deltas

contributes the most.

For recall,
PC helps improve it.

34 / 38

Outline of Today’s Lecture Systems
Software

Machine
Learning

ML for Systems

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

LSTMs

for Cache Prefetching

Today’s Paper:

35 / 38

Lessons Learned (1)

What to remember when using LSTMs for prefetching.

Don’t Learn the Address, learn Address Deltas instead.

0x40001ee0: R 0xbfffe798
0x40001efd: W 0xbfffe7d4
0x40001f09: W 0xbfffe7d8
0x40001f20: W 0xbfffe864
0x40001f20: W 0xbfffe868

Size of Trace: O(100M)

Huge.. and extremely sparce.
O(10M) unique addresses.

Memory Access Trace

0xbfffe868

Possible values = 2&'
64-bit binary number

Normalizing that to [0, 1]
leads to information loss.

0 0 0 1 0 0 0

Address Delta(𝑡!$#, 𝑡!)

Record the most frequently seen

“one hot encoding”

Convert each unique delta to:

“Small” set of deltas.

Classification: predict specific values.

36 / 38

Lessons Learned (2)

What to remember when using LSTMs for prefetching.

Prefetching allows for multiple predictions, thus higher perceived model accuracy.

Prefetch the top-10 predictions, at each timestep 𝑡$.

Precision-at-10 =
Correct Delta Predictions

All Real Deltas

Correct Prediction, if the real delta is one of the 10 predictions.

LSTM models achieve much higher precision-at-10, not precision.

… and probably that’s why observe similar performance between the Embedding and Clustering LSTMs.

37 / 38

Lessons Learned (3)

Clustering LSTM

What to remember when using LSTMs for prefetching.

The Clustering LSTM delivers higher recall,
but similar precision to the Embedding LSTM.

Embedding LSTM

The Embedding of (PC, Delta) deliver high precision
due to the Deltas and high recall due to the PCs.

38 / 38

Report Due March 28 at 18.00
Answer / expand upon these 4 questions:

1. What problem is the paper addressing and why is it important?

2. How do they approach to solve the problem?

3. What are the main evaluation results?

4. What are 2 things you will remember from this paper?

Contact
• Via email: thaleia.doudali@imdea.org

Website

https://thaleia-dimitradoudali.github.io/

https://thaleia-dimitradoudali.github.io/

