Lecture 2 of the

MLArchSys Seminar

Instructor: Thaleia Dimitra Doudali

Assistant Professor at IMDEA Software Institute

Universidad Politécnica de Madrid (UPM)

March 2023

Outline of Today's Lecture

Systems ML *for* Systems Machine Learning

Today's Paper:

Learning Memory Access Patterns

Milad Hashemi¹ Kevin Swersky¹ Jamie A. Smith¹ Grant Ayers^{2*} Heiner Litz^{3*} Jichuan Chang¹ Christos Kozyrakis² Parthasarathy Ranganathan¹

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

for Cache Prefetching

LSTMs

Outline of Today's Lecture

Systems ML *for* Systems Machine Learning

Today's Paper:

Learning Memory Access Patterns

Milad Hashemi¹ Kevin Swersky¹ Jamie A. Smith¹ Grant Ayers^{2*} Heiner Litz^{3*} Jichuan Chang¹ Christos Kozyrakis² Parthasarathy Ranganathan¹

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

LSTMs

Cache Hierarchy

Data is allocated in memory. When accessed from memory, it gets cached.

Data Prefetching

In addition to caching upon memory accesses, hardware prefetches data from memory into the cache, as well.

Next Line (1) + Stride Prefetchers (2)

Stream Prefetcher (3)

Correlation Prefetcher (4)

Prefetches data based on history of memory accesses.

Memory Accesses: A B C D C A C D B C A

History Table

Records the address that was next to "tag" the past 2 times.

Limited size, possible conflicts due to indexing.

Global History Buffer - GHB (5)

Decouples table indexes from the storage of prefetch-related history.

Memory Accesses: A B C D C A C D B C A

Evaluation Metrics

Timeliness = How early data is prefetched, versus when it is actually accessed, if at all.

Prefetching = Forecasting Time Series

Prefetching is a prediction problem = Forecasting future values of data that are ordered in time.

Timestamp1	0x40001ee0:	R	0xbfffe798
Timestamp2	0x40001efd:	W	0xbfffe7d4
Timestamp3	0x40001f09:	W	0xbfffe7d8
Timestamp4	0x40001f20:	W	0xbfffe864
Timestamp5	0x40001f20:	W	0xbfffe868

= Time series of accesses to memory addresses.

Outline of Today's Lecture

Systems ML *for* Systems Machine Learning

Today's Paper:

Learning Memory Access Patterns

Milad Hashemi¹ Kevin Swersky¹ Jamie A. Smith¹ Grant Ayers^{2*} Heiner Litz^{3*} Jichuan Chang¹ Christos Kozyrakis² Parthasarathy Ranganathan¹

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

for Cache Prefetching

LSTMs

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

In the context of this lecture's paper, LSTM is a solid box, no need to understand the internals.

We'll focus on the inputs and outputs: what exactly it learns, what exactly it predicts.

input
$$\longrightarrow$$
 LSTM-based
Deep Neural Network \longrightarrow output

... but since you're curious let's see it's internal functionality.

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

RNNs use information from many time steps $X_0, X_1 \dots X_t$ to make a prediction h_t

E.g., the clouds are in the .. sky.

Source: <u>https://colah.github.io/posts/2015-08-Understanding-LSTMs/</u>

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

RNNs struggle to capture long-term dependencies.

E.g., I grew up in France, I speak fluent .. French.

LSTMs to the rescue!

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

 $i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i) =$ "input gate" layer = which values to update. $\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$ = new candidate values to add to the cell state.

Layer

What new information are we storing in the cell state?

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Transfer

Operation

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

Update the old state C_{t-1} with the new one C_t .

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Neural Network Pointwise Operation

Long Short Term Memory (LSTM) networks are a type of Recurrent Neural Networks (RNNs) used for forecasting.

 $o_t = \sigma \left(W_o \left[h_{t-1}, x_t
ight] \ + \ b_o
ight) \$ = "output gate" layer.

 $h_t = o_t * \tanh(C_t)$ = push between -1..1, to output part of the cell state.

Output h_t is a filtered version of C_t .

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Outline of Today's Lecture

Systems ML *for* Systems Machine Learning

Today's Paper:

Learning Memory Access Patterns

Milad Hashemi¹ Kevin Swersky¹ Jamie A. Smith¹ Grant Ayers^{2*} Heiner Litz^{3*} Jichuan Chang¹ Christos Kozyrakis² Parthasarathy Ranganathan¹

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

for Cache Prefetching

LSTMs

Learning Memory Access Patterns

The data available for ML training is a *memory access trace*:

Prefetching as Classification

Memory footprint is sparse means that a relatively **small**, and **consistent** set of addresses is used.

Learn address deltas, not raw addresses!

The number of uniquely occurring deltas is often orders of magnitude smaller than uniquely occurring addresses.

- 1. Go through the memory access trace.
- 2. Compute address deltas for every (t_N, t_{N-1}) .
- 3. Keep the deltas that appear at least 10 times.
- 4. Create a "vocabulary" of these unique deltas.

Prefetching as Classification = Prediction will be one of these deltas.

3. Output

1. Input

0

With Classification, the LSTM predicts 1 0 0 0 probability for each of the X vectors. "one hot encoding"

4. Prefetching Action

Prefetch the top-10 predictions, at each timestep t_N .

Approach 2: Clustering + LSTM (1)

Focus on *local* context, e.g., data structures are stored in contiguous memory address and accessed repeatedly.

1. Run k-means to cluster the addresses.

2. Deltas are computed within each cluster.

- Smaller "vocabulary" of unique deltas.
- Potentially missing the "global" context.

- 1. Train an LSTM per cluster of deltas.
- 2. Add cluster ID as an extra feature.
- 3. Tie weights.
- Reduced model size, faster training.
- 1 extra pre-processing step for clustering.

Outline of Today's Lecture

Systems ML *for* Systems Machine Learning

Today's Paper:

Learning Memory Access Patterns

Milad Hashemi¹ Kevin Swersky¹ Jamie A. Smith¹ Grant Ayers^{2*} Heiner Litz^{3*} Jichuan Chang¹ Christos Kozyrakis² Parthasarathy Ranganathan¹

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

for Cache Prefetching

LSTMs

Evaluation Metrics (1)

Correct Prediction, if the *real* delta is one of the 10 predictions.

Evaluation Metrics (2)

Records all 10 predicted deltas. Quantifies the % of the "vocabulary" that could be predicted.

Evaluation Baselines

Stream Prefetcher

Global History Buffer (GHB)

Embedding LSTM

Clustering LSTM

Evaluation (1)

LSTM models achieve high precision, especially for complex patterns (e.g., websearch). No great difference between the embedding and clustering LSTM.

Evaluation

Stream prefetcher achieves highest recall, due to its dynamic vocabulary (set of deltas). **Clustering** LSTM better than embedding, because creates better vocabulary (set of deltas).

Sensitivity to Feature Selection

What happens when using only PC or Deltas as input features.

Embedding LSTM

For precision, *only deltas* contributes the most.

Outline of Today's Lecture

Systems ML *for* Systems Machine Learning

Today's Paper:

Learning Memory Access Patterns

Milad Hashemi¹ Kevin Swersky¹ Jamie A. Smith¹ Grant Ayers^{2*} Heiner Litz^{3*} Jichuan Chang¹ Christos Kozyrakis² Parthasarathy Ranganathan¹

1. Prefetching Overview

2. LSTMs Overview

3. LSTMs for Prefetching

4. Evaluation

5. Lessons Learned

LSTMs

Lessons Learned (1)

What to remember when using LSTMs for prefetching.

Don't Learn the Address, learn Address Deltas instead.

0x40001ee0:	R	0xbfffe798
0x40001efd:	W	0xbfffe7d4
0x40001f09:	W	0xbfffe7d8
0x40001f20:	W	0xbfffe864
0x40001f20:	W	0xbfffe868

Memory Access Trace

Size of Trace: O(100M)

Huge.. and extremely sparce. O(10M) unique addresses. 0xbfffe868 64-bit binary number Possible values = 2⁶⁴

Normalizing that to [0, 1] leads to information loss.

Record the most frequently seen

Address Delta(t_{N+1} , t_N)

Convert each unique delta to:

"one hot encoding"

"Small" set of deltas.

Classification: predict specific values.

Lessons Learned (2)

What to remember when using LSTMs for prefetching.

Prefetching allows for multiple predictions, thus higher *perceived* model accuracy.

Prefetch the top-10 predictions, at each timestep t_N .

Precision-at-10 = # Correct Delta Predictions # All Real Deltas

Correct Prediction, if the *real* delta is one of the 10 predictions.

LSTM models achieve much higher precision-at-10, not precision.

... and probably that's why observe similar performance between the Embedding and Clustering LSTMs.

Lessons Learned (3)

What to remember when using LSTMs for prefetching.

The Clustering LSTM delivers higher recall, but similar precision to the Embedding LSTM.

Clustering LSTM

The Embedding of (PC, Delta) deliver high precision due to the Deltas and high recall due to the PCs.

Embedding LSTM

Report Due March 28 at 18.00

Answer / expand upon these 4 questions:

- 1. What problem is the paper addressing and why is it important?
- 2. How do they approach to solve the problem?
- 3. What are the main evaluation results?
- 4. What are 2 things you will remember from this paper?

Contact

• Via email: thaleia.doudali@imdea.org

https://thaleia-dimitradoudali.github.io/

Website

