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About My Research

| build software systems that manage heterogeneous hardware resources using machine learning and computer vision.
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The Era of Data
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Need for speed and massive storage capacities!



The Era of Heterogeneous Hardware
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Heterogeneity Across Computing Platforms

Supercomputers

Exascale Era A
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Personal Devices
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Heterogeneity Trade-offs
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Characteristic Technology Hardware Vendors
Low Latency MRAM

High Bandwidth HBM
Persistence PMEM

Examples of other heterogeneous memory technologies.



Building Software to Maximize the Hardware Efficiency

Dynamic Data
Movements!

Data Allocated
across Memories
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Runtime
Application Level

Resource Management
Software  System Level

Hardware Level

It is a complex decision mix to manage the

data allocated across memories.

E.g., Which / How much / Where / When to move data?

Why do we need smarter and faster systems?
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Application Complex data Exploded system
data sizes access patterns parameter space Hard to balance
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Building Smart Systems
Foundations for practical Machine Learning (ML)-based Management




The Vision

ML-augmented heterogeneous resource managetr.
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Contributions Towards the Vision

Laying the grounds for the practical integration of ML.
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System design of Kleio

Kleio is a hybrid memory page scheduler with machine intelligence. [HPDC ‘19]

Not all pages “need” ML.

Kleio extends existing lightweight hybrid memory management with the necessary
amount of machine intelligence to boost application performance.
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The Key to Success

Selecting a small page subset for ML-based management.
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It is not a lightweight process, but necessary to maximize the effects of ML on application performance.

Kleio bridges the performance gap left by existing solutions by 80%, on average.
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Reducing Operational Overheads of ML-based Management
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Can we accelerate the page selection process via image-based decisions?



Why images?

Personal Experience Image-based ML Classifiers
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by visualizing memory access patterns.

Figure 4: Various visual representations of the same time-
series data.

Finance: Trading by learning time series data as images.

Feature Extraction

From Multi-fold Representation to Image Encoding
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Source: Presentation from Michela Taufer.

Figure 3: The fingerprinting algorithm encodes time-frequency
features of the original time series into binary vectors.

Source: Kexin Rong et al. at VLDB “18.
Bioinformatics: Learn protein functions.

Earthquake Detection: Extract Frequencies of Seismic Waves.



Visualizing Pages Selected for ML
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Towards Image-based Page Selection
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Page Selection Comparison
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Similar page orderings between our initial approach (vis-bbox)
and the performance-based selection of Kleio.



Performance Evaluation

1. Application Performance 2. Page Selection Time
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Comparable application Accelerates the time to select pages for
performance levels. ML-based management.
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ML-augmented Heterogeneous Resource Manager

HDD/TAPE
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Remaining Challenges

Fully integrated adaptive resource manager.
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Computer Vision + Machine Learning

Pattern Recognition.

How to zoom-
in?

Image
Resolution?

Pattern Recognition
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Example Use Cases
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Resource |
Management 1
Decision I

Build an “ImageNet” for memory access patterns.

Train classifiers to take actions upon recognizing a pattern.

What Classes
to define?

Metadata?

Storage?

Label guidelines for open
contributions?
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Computer Vision + Machine Learning

Pattern Prediction.

Pattern Prediction
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