
Page Scheduling on Hybrid Memory Systems 
with Machine Intelligence

Thaleia Dimitra Doudali, Ada Gavrilovska
Georgia Institute of Technology

Sergey Blagodurov, Abhinav Vishnu, Sudhanva Gurumurthi
Advanced Micro Devices, Inc.

[1] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski and G. H. Loh, "Heterogeneous memory 
architectures: A HW/SW approach for mixing die-stacked and off-package memories," 2015 IEEE 21st International 

Symposium on High Performance Computer Architecture (HPCA), Burlingame, CA, USA, 2015, pp. 126-136. 
doi:10.1109/HPCA.2015.7056027

1. Research Area 2. Motivation

4. Solution 5. Results

P
ag

e

P
ag

e

P
ag

e

P
ag

e

P
ag

e

P
ag

e

P
ag

e

P
ag

e

Application

Page Scheduler

DRAM Non Volatile Memory

hot pages rest of the pages

Hybrid Memory Systems: The high cost of DRAM in large capacities, limits 
its use in future systems. Denser technologies (e.g., NVM) are expected to 
extend the memory physical address space, thus the system’s overall main 
memory capacity.

Page Scheduler: Periodically migrates application pages, allocating future 
hot pages in the fastest memory component (e.g., DRAM), until capacity is 
full. This methodology is proven to boost performance.

P
ag

e

P
ag

e

P
ag

e

P
ag

e

P
ag

e

P
ag

e

P
ag

e

P
ag

e

Application

Page   Scheduler

DRAM Non Volatile Memory

hot pages rest of the pages

Oracle Page Scheduler: Assumes oracular knowledge of the application’s 
memory access pattern, setting the theoretical upper bound of performance 
that the application can achieve over the hybrid memory system.

History Page Scheduler: Current state-of-the-art design, which utilizes the 
immediately observed access pattern behavior to make future predictions. [1]

Performance Gap: The History Page Scheduler, results in up to 40% 
reduction of the optimal application performance (i.e., speedup from the case 
where all data is allocated in NVM). 

3. Problem Statement

Existing Page Scheduler designs fail to accurately predict future highly accessed pages. Thus, they do not migrate them to DRAM in a timely fashion, leading 
in significant performance reduction. Can Machine Intelligence provide us with more accurate predictions, so as to deliver higher application performance?

Page Selector

RNN History

Hot Page Ordering

important 
pages

rest of 
the pages

page access counts

Page Scheduler Overview: 
● Identifies the set of application pages whose timely placement in DRAM will 

bring most of the performance improvement (i.e., important pages).
● Trains separate Recurrent Neural Networks for each of these pages, 

learning the aggregate number of per page access counts across the 
scheduling intervals. 

● Leverages the lightweight methodology followed by the current 
state-of-the-art History Page Scheduler for the rest of the pages.

● During a scheduling interval, the scheduler collects the predicted access 
counts and orders pages in descending access frequency, prioritizing 
DRAM allocations for the hot pages, until capacity is full.

Achieving 1st Goal: We bridge 95% of the performance gap between the 
Oracle and History Page Schedulers when applying RNN access count 
predictions for the first 100 most important to performance pages.

Achieving 2nd Goal: We deliver low training and inference times by:
● Reducing the number of application pages whose timely allocation in 

DRAM through the RNN predicted access counts significantly boosts 
performance. 

● Leveraging the current state-of-the-art methodology for the pages whose 
access pattern can be predicted without machine intelligence, or whose 
access frequency does not drastically impact performance.

AMD, the AMD Arrow logo, AMD Opteron, and combinations thereof are trademarks of Advanced 
Micro Devices, Inc. Other product names used in this publication are for identification purposes only 
and may be trademarks of their respective companies.


