
MemSpan: Toward Efficient Data Placement in
Heterogeneous Memory Systems

Thaleia-Dimitra Doudali, Ada Gavrilovska
{tdoudali, ada}@cc.gatech.edu

❖ Big Data and HPC applications require fast
processing speeds.

❖ Commodity hardware (CPU, DRAM, Disk) face
cost and scale issues.

❖ New hardware technologies emerge.
➢ Processing Units
➢ Memory Units
➢ Storage Units

❖ New hardware technologies will operate together
with the predominant ones.

➢ Heterogeneous systems is the new norm.
Figure 1: Data centers and High Performance Computing environments are going to

couple heterogeneous hardware units with different characteristics, so as to enable
faster computation, which the predominant hardware cannot provide anymore by itself.

1. Motivation

Big Data Applications

Hardware

Processing Units Memory Units Storage Units

CPU

GPU

FPGAs

DRAM

MCDRAM

PCM

Disk

SSD

Flash

❖ The memory substrate will couple small amounts
of “fast” access units, with larger portions of
“slower” access units.

❖ Data-intensive applications will span their dataset
across all available memory units.

❖ Need to cleverly map application’s data across the
different memory components.

➢ Critical to performance data should be in fast
memory.

❖ Need for an OS-level solution.
➢ No changes needed in the source code.
➢ Can work for any type of application.

2. Problem Statement

❖ Explicit API to allocate memory on the new units.
➢ Needs programming efforts.

❖ Application profiling tools. [1] [2]

➢ Offline run: keeps track of number of accesses
on a data structure / object granularity.

➢ cost = number of accesses per byte.
➢ Order data objects according to cost.

➢ Online run: places data objects with high cost in
fast memory, until capacity is full.

[1] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh
Sankaran, Jeff Jackson, and Karsten Schwan. 2016. Data tiering in heterogeneous memory systems. In
Proceedings of the Eleventh European Conference on Computer Systems (EuroSys '16). ACM, New York, NY,
USA, , Article 15 , 16 pages. DOI=http://dx.doi.org/10.1145/2901318.2901344

[2] Du Shen, Xu Liu, and Felix Xiaozhu Lin. 2016. Characterizing emerging heterogeneous memory. In
Proceedings of the 2016 ACM SIGPLAN International Symposium on Memory Management (ISMM 2016). ACM,
New York, NY, USA, 13-23. DOI: https://doi.org/10.1145/2926697.2926702

3. Existing Solutions

HPC Applications

1. Not all applications are sensitive to the presence of
slower memory.

4. Observations
❖ Build a tool that can on-the-fly:
➢ Identify if an application overall is sensitive to

slow memory.
➢ Identify which data structures are critical to

performance.
➢ Place in slow memory the non-sensitive

components.
➢ Prioritize the placement of data objects with high

cost in fast memory, until capacity is full, similarly
to existing work.

❖ In this way, we can:
➢ Leverage the existence of slow memory.
➢ Make existing solutions simpler / faster; can

become practical for dynamic workloads.
➢ Provide fairness or SLA guarantees in

multi-tenant environments, where applications
will compete for the available fast memory.

5. Proposal

2. Not all the data structures of an application are
critical to performance.

Figure 2: Execution of 3 kernels from Polybench/C benchmark suite on an “all-fast”
memory environment (DRAM) versus an “all-slow” setup, for different scales of memory

access latency and bandwidth slowdown.

Objects allocated in fast memory Execution Time Cost / Benefit

All objects 56.44 s 1

Matrix A 130.25 s 0.04

Matrix B 56.98 s 0.99

None 133.05 s 0

Table 1: For the triangular matrix multiply kernel (trmm) B = B * A, placing array A in fast
memory contributes only by a factor of 0.04 to the overall performance. However, placing

matrix B guarantees performance almost same to an “all-fast” configuration.

