
A Picture Is Worth a Thousand... Features! Using Computer Vision
Alongside Machine Learning in Computer Systems

Thaleia Dimitra Doudali
IMDEA Software Institute

Madrid, Spain
thaleia.doudali@imdea.org

1 INTRODUCTION
The use of machine learning methods in computer systems shows
great potential to improve upon existing approaches and deal with
the increased complexity across application domains, system and
hardware configurations and management of current and emerg-
ing computing platforms. For example, the use of reinforcement
learning is shown to improve upon system [7] and hardware [14]
configuration and the use of deep neural networks to result in more
sophisticated resource management decisions, such as for hybrid
memory management [12] and data prefetching [13, 15]. The com-
mon aspect of current use cases of machine learning for systems is
the type and representation of the input data, which are usually nu-
merical values (raw or encoded) that capture certain behaviors and
metrics observed at certain times or though time, e.g., throughout
workload execution.

At the same time, there is a proliferation of machine learning
methods deployed for image classification, video analytics, object
detection and recognition. These machine learning methods are
often coupled with computer vision algorithms to build end-to-
end image-based pipelines, such as for the case of autonomous
driving [6]. In the context of computer systems research, we are
yet to deploy such algorithms, because of the lack of using images
inside system pipelines.

As researchers and developers of computer systems, we are ac-
tually using images in our daily activities. We create images to
illustrate how our systems operate and compare against other solu-
tions in the research artifacts we produce. In addition, we observe
images to understand how and why our systems and computing
platforms operate in the observed way, for instance by using perfor-
mance monitoring tools such as Grafana [1] and Intel’s VTune [3].
In my own personal experience [11], observing image representa-
tions of certain system-level behaviors has helped me immensely
in producing insights and ideas for system design.
How much of a wild and crazy idea1 is it to create image-
based computer system pipelines? An image can be a visual
representation of an observed system-level behavior, e.g., an image
that captures which memory addresses are being accessed through-
out workload execution. In addition, an image can also capture the
values of an observed metric across time, e.g., CPU usage across
the hours of a day and visually illustrate the changes in the value
of the usage. However, an image used in a system pipeline doesn’t
have to be constructed in a way that it is visually comprehensible
by the human eye. For instance, in Sinan [16] an image is a 3D
tensor consisting of per-tier resource utilization within a pastime
window. In summary, an image can be a graphical representation
1This document summarizes the author’s selected talk at the ASPLOS 2022 Wild and
Crazy Ideas (WACI) Session, March 2022, Lausanne, Switzerland.

or more simply a multidimensional array that captures an observed
system-level information over a window of time.
Why would a system benefit from using images? Well, we are
currently not taking advantage of a whole set of useful and opti-
mized algorithms, such as computer vision and image processing
algorithms, as well as machine learning methods like classifiers
that are effective for image-based object detection and recognition.
In addition, using images reduces the dimensionality of our data to
fewer dimensions, such as 2D or 3D [8]. Using images is particularly
effective for data that exhibit high temporal and spatial correlations,
such as data access patterns [10]. Moreover, it can reduce the size
of input data and reduce training and learning times. For example,
using a 10x10 pixels image to depict a time series of 10,000 points,
reduces the length of input data by 100×. In other words, a picture
is worth a 1000... features. Nevertheless, using image-based repre-
sentations of system-level data creates an opportunity to leverage
new machine learning and computer vision methods and reduce
the huge amount of data that systems currently produce.

In the remainder of this document, I will explain why using im-
ages inside systems is a tangible idea, via specific example use cases,
and describe open questions and challenges that will arise. I hope to
provoke your thoughts on how we represent system-level data and
open your eyes to a new class of algorithms that we are currently
not leveraging. Taking it a step further, I believe this can revolu-
tionize the way we design future systems and hope to establish a
new intersection of active research, that is the SysMLCV, where
we use Machine Learning and /or Computer Vision for Systems.

2 LEARNING DATA ACCESS PATTERNS
In this Section, I will showcase how computer vision can be used
alongside machine learning in computer systems, focusing on a
particular use case, that is to learn data access patterns. More specif-
ically, I will focus at the memory-level, where current state-of-the-
art system-level solutions [12] deploy Recurrent Neural Networks
to learn such memory access patterns. In order to build an image-
based pipeline, we need to create visual representations of how
applications access memory. Figure 1 includes an example of such
an image, where a single black point corresponds to the virtual
memory address of the 4 KB page that was accessed (y-axis) on the
specific time step (x-axis). The raw data available for visualization
are memory access traces that are publicly available for the SPEC
benchmarks [4].

Figure 1 illustrates a system-level solution that creates such im-
ages, by visualizing information it collects while monitoring the
application’s memory accesses (memory access trace), and then
uses image-based machine learning methods to recognize and pre-
dict future patterns. Depending on the type of access pattern, e.g.,



Thaleia Dimitra Doudali

Resource Management
e.g., reallocate data

ML related action 
e.g., select model

Pattern
Class

Example Use Casesstride

stride

image + metadata

Pattern 
Recognition

Pattern 
Prediction

future pattern

Memory Access Trace

Visualize

timeM
em

or
y 

ad
dr

es
s

Figure 1: An image-based system for learning, recognizing and predicting memory access patterns.

sequential, strided, random, a system may choose to take a differ-
ence decision regarding its machine learning-based pipeline, or
make a resource management decision, such as to allocate, move or
free up memory. Next, I describe the role of the proposed system’s
subcomponents and open problems, challenges and opportunities
that arise when building an image-based system pipeline.

2.1 Visualization
As mentioned before, creating images reduces the dimensionality of
the overall sequence of memory accesses, thus certain patterns may
become less visible in a limited 2D space projection. This is partic-
ularly the case for long-running applications with large memory
footprints, where creating a single image for the whole workload
execution results in an all black image, since there can be millions
of memory accesses that are now projected in an e.g., 128x128 pixel
image. This raises the following challenges and opportunities.
Open Problems:
• How many images to create per workload, how often in time to

capture and visualize the access patterns?
• How to determine what size and resolution the images should

have? Small images are better for faster image processing, but
how much information should they contain to properly visualize
it? Do we want clear lines or just trends?

• Are we creating colored, grayscale or black-and-white images?
• What metadata to associate with the image? For example, we

could include the workload information, the level of storage
hierarchy of the data accesses (cache, memory, disk), the total
size of the memory footprint (y-axis) and workload execution
time (x-axis). What is the size of th amount of metadata?

• What storage schema is most efficient, depending on the total
number of created images and its metadata?

• How to build operating system-, library-, compiler-, runtime-
level support for providing the raw data and frequency of creat-
ing such images.

2.2 Pattern Recognition
Machine learning algorithms for pattern recognition are trained
over labeled data sets, such as ImageNet [2] and CIFAR-10[5] that

properly mark and label a pattern or object with its correspond-
ing class. Can we build such a dataset with images of data access
patterns? Such a dataset will not only enable the use of pattern
recognition methods, but also be a valuable contribution to the
academic community. Even just observing the images and getting
insight is a useful contribution. Here are the challenges and oppor-
tunities raised.
Open Problems:
• What classes to define for labeling data access patterns?
• What labeling guidelines to provide for community contributions

to the public dataset?
• Which classifiers to use for pattern recognition?
• What is the impact of a misclassified / unrecognized pattern?
• Will operating system-, library-, compiler-, runtime-level sup-

port help in properly marking and labeling the patterns?

2.3 Pattern Prediction
As the image-based pipeline is creating images of data access pat-
terns throughout workload execution, we now have a sequence
of such images, that is nothing else but a video! Therefore, we
can now leverage machine learning algorithms that predict the
next frame of a video to predict the next frame, i.e., image of data
access patterns, for a particular workload. This raises the following
challenges and opportunities.
Open Problems:
• How does such a solution compare to current ML-based methods

that predict raw data and a non-ML method? Metrics to consider
can be the prediction accuracy, training and inference times and
the effect on the system’s end decision-making.

• What is the impact of a mispredicted pattern?
• What is the granularity of machine learning model training?

Do we train a system-level model that learns all patterns, an
application-level model or a pattern-level model?

• How does the system operation interval overlapwith the training
periods?

2.4 Summary
In summary, I presented how images can be used to build purely
image-based system pipelines for the purpose of learning memory



A Picture Is Worth a Thousand... Features! Using Computer Vision Alongside Machine Learning in Computer Systems

1, 15, 15, 1

Forecast

15, 1

Time

Va
lu

e

Time

Va
lu

e

Forecast

VS.

Learning raw values Learning images

Figure 2: Time series represented with images.

access patterns, which can be extended to any level of data access
patterns (application-, cache-, memory-, storage-level). Will such
a pipeline be more effective than current solutions? I believe it is
worth exploring, especially since it enables the use of algorithms
(computer vision, image processing, ML classifiers, video frame
predictors) that we have not considered so far because of the way
we represent data at the system-level.

3 LEARNING TIME SERIES DATA
In this Section, I present another use case where images could
be used in systems. Due to their dynamic operation, systems col-
lect time series data for various performance metrics, such as re-
source consumption (compute, memory, storage) for native plat-
forms, servers, cloud datacenters etc. Forecasting future values of
these metrics helps better provision the hardware, balance the load
and improve upon scheduling. Thus, we keep looking for ways
to improve upon learning such metrics, enable more accurate pre-
dictions, online learning and reduce training and inference times.
Recent work in financial time series data shows the potential of
having more accurate forecasting when learning images instead of
raw data [9]. Will this work for system-level metrics? Is learning
images of time series data more effective than learning the raw
values of the data, as illustrated in Figure 2? Exploring this raises
challenges and opportunities that are similar to the ones described
in Section 2.1.
Open Problems:
• How many time steps per image?
• What size, resolution and color should the images have?
• One line or more per image? To potentially capture correlations

across metrics, such as compute, memory and disk usage.
• How does the image-based learning compare to forecasting raw

values with machine learning or analytical methods? Metrics to
consider can be the prediction accuracy, training and inference
times and the effect on the system’s end decision-making.

4 CONCLUSION
This document makes a case about the potential impact of a new
intersection of research areas, that is computer vision, machine
learning and computer systems. The goal of this wild and crazy
idea is to rethink the way we represent system-level information
and motivate you to consider visualizing it, that is, creating images.

This is essentially a way to reduce the dimensionality of the data,
capture spatial and temporal correlations, and potentially reduce
machine learning times. Most importantly, it unlocks the oppor-
tunity to use computer vision image processing methods, that we
currently do not leverage due to the lack of visualization. Will im-
ages revolutionize the way we build systems? Will image-based
system pipelines that couple computer vision with machine learn-
ing be more effective than machine learning-based or analytical
approaches? In any case, visualizing system-level behaviors and
creating relevant public image datasets, can be an important con-
tribution to the community and lead to greater insight on why
systems operate in a certain way and how to design better systems.

ACKNOWLEDGMENTS
The ideas presented in this document are proposed as future work
based on the author’s PhD dissertation [11] at the Georgia Institute
of Technology, that was completed in 2021 under the supervision
of Professor Ada Gavrilovska.

REFERENCES
[1] Grafana. https://grafana.com/.
[2] ImageNet. https://image-net.org/.
[3] Intel VTune Profiler. https://software.intel.com/content/www/us/en/develop/

tools/oneapi/components/vtune-profiler.html.
[4] ML-based Data Prefetching Competition. https://sites.google.com/view/

mlarchsys/isca-2021/ml-prefetching-competition.
[5] The CIFAR-10 dataset. https://www.cs.toronto.edu/~kriz/cifar.html.
[6] Mariusz Bojarski, D. Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,

Prasoon Goyal, L. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, X. Zhang,
Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. ArXiv,
abs/1604.07316, 2016.

[7] Ruobing Chen, Jinping Wu, Haosen Shi, Yusen Li, Xiaoguang Liu, and Gang
Wang. Drlpart: A deep reinforcement learning framework for optimally efficient
and robust resource partitioning on commodity servers. In Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’21, page 175–188, New York, NY, USA, 2020. Association for Computing
Machinery.

[8] Naftali Cohen, Tucker Balch, and Manuela Veloso. The effect of visual design in
image classification. CoRR, abs/1907.09567, 2019.

[9] Naftali Cohen, Tucker Balch, and Manuela Veloso. Trading via image classifica-
tion. CoRR, abs/1907.10046, 2019.

[10] Deeksha Dangwal, Weilong Cui, Joseph McMahan, and Timothy Sherwood.
Trace wringing for program trace privacy. IEEE Micro, 40(3):108–115, 2020.

[11] Thaleia Dimitra Doudali. Adding Machine Intelligence to Hybrid Memory Man-
agement. PhD dissertation, Georgia Institute of Technology, 2021.

[12] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva Gu-
rumurthi, and Ada Gavrilovska. Kleio: A hybrid memory page scheduler with
machine intelligence. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’19, pages 37–48,
New York, NY, USA, 2019. ACM.

[13] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. Learning memory
access patterns. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 1919–1928. PMLR, 10–15 Jul 2018.

[14] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. Confuciux: Autonomous
hardware resource assignment for dnn accelerators using reinforcement learning.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 622–636, 2020.

[15] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. A hierarchical neural model of data prefetching. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2021, page 861–873,
New York, NY, USA, 2021. Association for Computing Machinery.

[16] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and Christina
Delimitrou. Sinan: Ml-based and qos-aware resource management for cloud
microservices. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
2021, page 167–181, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

https://grafana.com/
https://image-net.org/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://sites.google.com/view/mlarchsys/isca-2021/ml-prefetching-competition
https://www.cs.toronto.edu/~kriz/cifar.html

	1 Introduction
	2 Learning Data Access Patterns
	2.1 Visualization
	2.2 Pattern Recognition
	2.3 Pattern Prediction
	2.4 Summary

	3 Learning Time series Data
	4 Conclusion
	Acknowledgments
	References

