Georgia Tech

CREATING THE NEXT

Cori: Dancing to the Right Beat of Periodic Data Movements over Hybrid Memory Systems

Thaleia Dimitra Doudali, Daniel Zahka, Ada Gavrilovska

@ IPDPS '21

Heterogeneous (Hybrid) Memory Hardware

Application Classes

Exploded Data Sizes

Need for more and faster memory.

Emerging Memory Hardware

Hybrid Memory Management Systems

Plethora of Existing Solutions

Heterogeneous Memory Architectures: A HW/SW Approach for Mixing **Die-stacked and Off-package Memories**

Mitesh R. Meswani Sergey Blagodurov David Roberts John Slice Mike Ignatowski Gabriel H. Loh

HPCA¹⁵ AMD Research Advanced Micro Devices, Inc. {mitesh.meswani, sergey.blagodurov, david.roberts, john.slice, mike.ignatowski, gabriel.loh}@amd.com

Coordinated and Efficient Huge Page Management with Ingens

Thermostat: Application-transparent Page Management for Two-tiered Main Memory

Thomas F. Wenisch Neha Agarwal University of Michigan ASPLOS '17 nehaag@umich.edu, twenisch@umich.edu

Nimble Page Management for Tiered **Memory Systems**

Zi Yan Daniel Lustig **Rutgers University & NVIDIA** NVIDIA ziy@nvidia.com dlustig@nvidia.com David Nellans Abhishek Bhattacharjee NVIDIA dnellans@nvidia.com

ASPLOS '19

Yale University abhishek@cs.yale.edu

High Performance Distributed Systems (Best Paper Nominees)

HPDC '19, June 22-29, 2019, Phoenix, AZ, USA

HPDC '19

Kleio: A Hybrid Memory Page Scheduler with Machine Intelligence

Thaleia Dimitra Doudali Georgia Institute of Technology thdoudali@gatech.edu

Sergey Blagodurov Advanced Micro Devices, Inc. Sergey.Blagodurov@amd.com

Abhinav Vishnu Advanced Micro Devices, Inc. Abhinav.Vishnu@amd.com

Ada Gavrilovska Georgia Institute of Technology ada@cc.gatech.edu

Sudhanya Gurumurthi

Advanced Micro Devices, Inc. Sudhanva.Gurumurthi@amd.com

All these systems make *periodic* memory management decisions, based on reactive or predictive policies.

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach¹, Emmett Witchel

The University of Texas at Austin OSDI '16 ¹The University of Texas at Austin and VMware Research Group

HeteroOS - OS Design for Heterogeneous Memory Management in Datacenter

Sudarsun Kannan¹ Ada Gavrilovska² Vishal Gupta³ Karsten Schwan² ¹Department of Computer Sciences, University of Wisconsin-Madison ²School of Computer Science, Georgia Tech, **ISCA '17** ³VMWare {sudarsun@cs.wisc.edu}, {ada@cc.gatech.edu}, {vishalg@vmware.com}

Lost Opportunity for Performance Due to empirical configuration.

Systems are empirically tuned.

Periodicity differs by orders of magnitude!

Which period duration to use? Which one maximizes performance?

System	Periodicity
Thermostat	10 sec
Nimble	5 sec
Ingens	2 sec
HMA	1 sec
Hetero-OS	0.1 sec
Kleio	0.01 sec

No single proposed period value maximizes performance across applications and schedulers. 10% - 100% performance slowdown.

5

Empirical Configuration Execution-based tuning of the periodicity.

6

CREATING THE NEXT

Replacing Empirical with Insight-based Configuration Execution-based tuning of the periodicity.

"Don't Break the Data Reuse" Insight

Results from exhaustive performance experimentation.

8 Georgia Tech

System Design of "Cori"

Cori is an insight-based system-level solution for tuning the frequency of periodic page schedulers.

Evaluation Methodology

Metrics

Application performance.

Slowdown from optimally selected frequency (identified via extensive experimentation).

• Tuning Overheads.

Number of trials to find the frequency that delivers best performance.

Comparison

- Proposed values from existing solutions.
 HMA [HPCA '15], Ingens [OSDI '16], Hetero-OS [ISCA '17], Thermostat [ASPLOS '17], Nimble [ASPLOS '19], Kleio [HPDC '19].
- Cori's selection of period values that differ by the dominant reuse time. Tuning trials in increasing order of values.
- "Baseline" selection of period values that differ by a constant time step. Tuning trials in increasing, decreasing and random order of values.

Methodology

•

- Python-based simulation of hybrid memory system and page scheduler. <u>https://github.com/GTkernel/cori-sim</u>
 - Validation using a hardware testbed with DRAM and Intel's Optane persistent memory. https://github.com/GTkernel/x86-Linux-Page-Scheduler

Evaluation (1) Application performance.

Georgia Tech

11

Evaluation (2) Number of tuning trials needed to find best performance.

Evaluation (3) Validation on Optane persistent memory.

Even a difference of 1-2 seconds in period duration can reduce performance by 30%-50%.

Page Scheduler

Hybrid

Memory

System

Hardware

List of Candidate Periods

Cori delivers **maximum** performance improvements for **minimal** tuning overheads.

Checkout Cori's arXiv extended version: <u>https://arxiv.org/abs/2101.07200</u>

