

The Importance of Workload Choice in **Evaluating LLM Inference Systems**

Thaleia Dimitra Doudali Konstantinos Papaioannou

IMDEA Software Institute, Madrid, Spain

2. State-of-the-art LLM Inference Systems

No consistent evaluation approach!

	System	Dataset		Inference Scenario	
		Synthetic	Real	Latency-critical	Best-effort
Memory Scheduling Management Optimizations	Orca				
	SARATHI	✓			
	DeepSpeed-FastGen	✓			
	Splitwise		✓	✓	
	vLLM		✓	✓	
	S ³		✓	✓	✓
	FlexGen	✓			✓

Problem Statement: What is the impact of workload choice in evaluating LLM inference systems?

3. Dataset Analysis

Takeaway: The use case significantly impacts the sequence length of the output, but it has an even greater impact on the length of the input sequences.

4. Impact of Use Case

Takeaway: The use case impacts performance significantly.

- 1. Two classes of inference performance (high vs low).
- 2. Text summarization and conversational use cases have low performance, due to their larger inputs.

Memory

of latency-critical inference, except in the text summarization use case.

Best-effort Inference CNN DailyMail Alpaca Dolly ShareGPT .ed/s (text-generation) (question-answering) (text-summarization) (conversational)

> **Takeaway**: Higher memory availability always improves performance of best-effort inference.

6. Lessons Learned

The workload choice is very important!

Models

Text generation and question-answering: achieve high performance.

- benefit from larger KV cache size.
- Best-effort inference consistently benefits from Let's enhance memory management for this higher memory availability. inference scenario.
- Text summarization and conversational use cases have low performance, due to their larger inputs. inference performance.

Treat them separately to improve their

Ideal for evaluating LLM inference systems.

