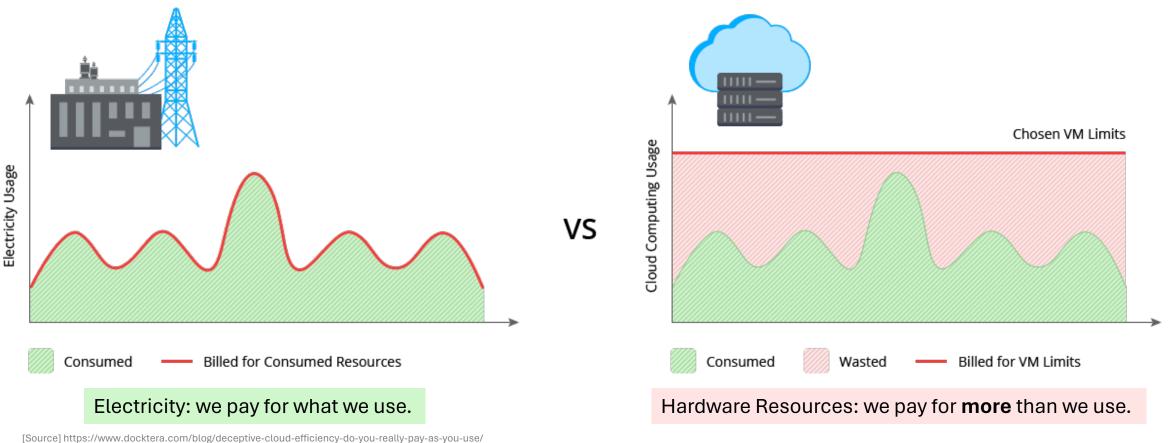


Toward Using *Representation Learning* for Cloud Resource Usage Forecasting

Razine Moundir Ghorab, Thaleia Dimitra Doudali

IMDEA Software Institute, Madrid, Spain June 3rd 2024 @ Al4Sys workshop

Problem: Low Resource Efficiency in the Cloud



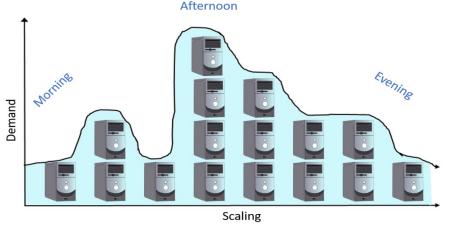
What causes this significant gap between consumed and paid resources?

- Users: over-estimate resource needs, ask for more than they end up using.
- > Cloud Providers: allocate more resources to satisfy peak load and guarantee Service-Level-Agreements (SLAs).
- Cloud Management System: suboptimal resource management decisions.

Solution: Resource Management Methods

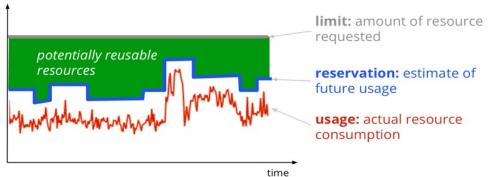
1. Resource Autoscaling

 Automatically adjust the amount of allocated resources based on demand.



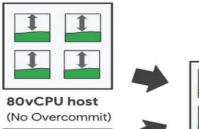
[[]Source] https://www.linkedin.com/pulse/autoscaling-cloud-part-1-anshul-jindal

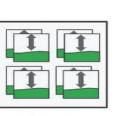
What is the **key** for these methods to work?



2. Resource Overcommitment

Allocate more virtualized resources than physically available.





80vCPU host (2x Overcommit)

 80vCPU host
 [Source]https://cloud.go

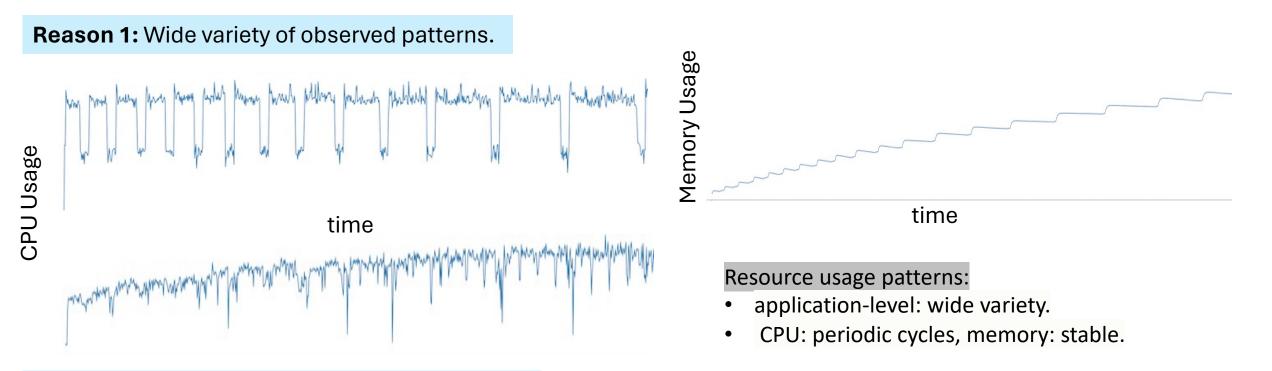
 (No Overcommit)
 nodes-now-ga

[Source]https://cloud.google.com/blog/produc ts/compute/cpu-overcommit-for-sole-tenantnodes-now-ga

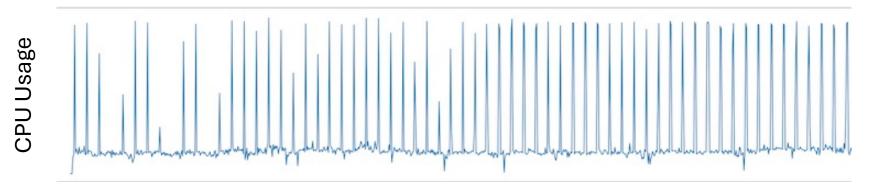
The Key for Effective Resource Management is Accurate Forecasting of Resource Usage.

[Source] https://www.laitimes.com/en/article/30aoz_3h08q.html

Challenge: Accurate Forecasting is Hard to Achieve



Reason 2: Unseen and unpredictable patterns.

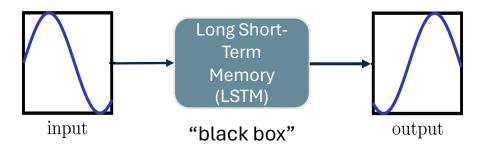


Emergence of new patterns:

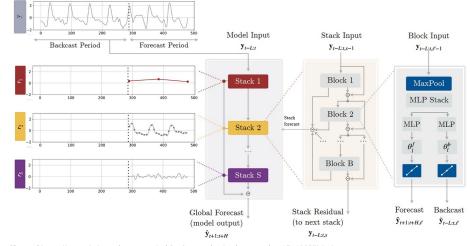
- New users / workloads.
- Same users with new behaviors.

Current Machine Learning Methods for Time Series Forecasting

LSTMs (Long Short-Term Memory Neural Networks)



N-Hits (Neural Hierarchical Interpolation)



 $[Source]\ https://towards datascience.com/xai-for-fore casting-basis-expansion-17a16655b6e4$

Limitations

- High runtime overheads.
- High complexity.
- Hard to integrate in production.
- Low explainability.
- Limited predictive capabilities.

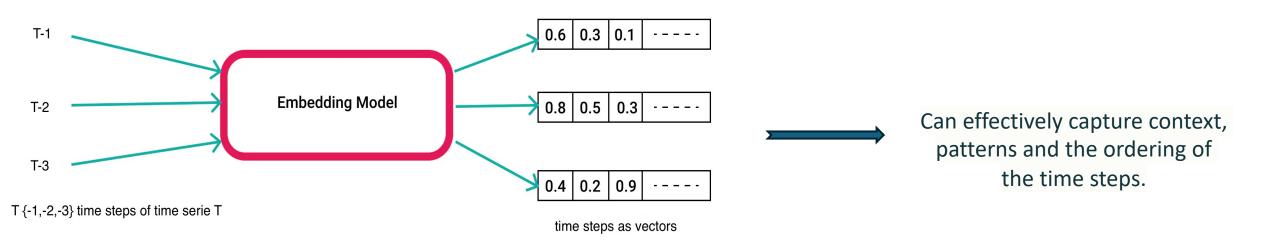
Our Goal

Develop a predictor that is:

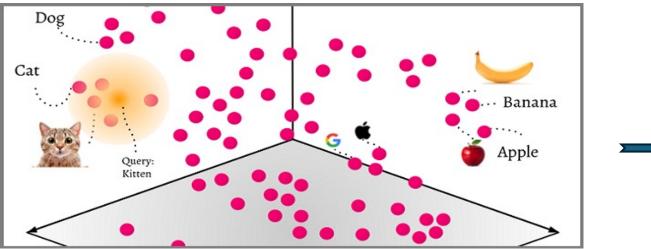
- Highly accurate.
- Fast, has low overheads.
- Practical to use.
- Explainable.

Inspired by Representation Learning

Represent time series as embeddings in the vector space.



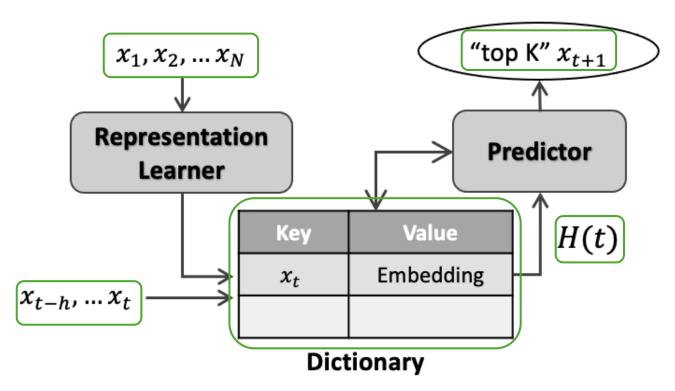
Explore spatial proximity to find similarities and make predictions.



To find similarities in the vector space, we can use the K Nearest Neighbors (KNN) algorithm.

[Source] https://www.mongodb.com/fr-fr/resources/basics/vector-databases

Proposed System Overview (MTEBWY = May The Embedding Be With You)



MTEBWY System Prototype

Representation Learner

- Creates a dictionary of embeddings using word2vec "embedding model" for each value x_t of the timeseries x₁, x₂,..x_N
- The dictionary size is the number of unique integer values in each time serie.

Predictor

- 1. Takes as input a window of history $x_{t-h} \dots x_t$
- 2. Maps the x_t values to their embeddings in the dictionary.
- 3. Calculates the weighted average H(t) of these embeddings.
- 4. Finds the K nearest neighbors (KNN) of H(t) using cosine similarity.
- 5. Uses the reverse mapping in the dictionary to return a set of K predictions for time t + 1.

Experimental Setup

Evaluation Baselines

- **Persistent Forecast:** Predicts next value as current value y(t + 1) = y(t).
- **LSTM** (Long Short-Term Memory network).
- **N-HiTS** (Neural Hierarchical Interpolation)

Automatic hyperparameter fine-tuning via AutoLSTM and AutoNHITS from the framework NeuralForecast (Nixtla).

Dataset

Multiple time series of CPU usage from the DeathStarBench benchmark suite.

Evaluation Metrics

Is the ground truth among the set of K predictions (KNN) at each time step?

• Yes: top-K accuracy.

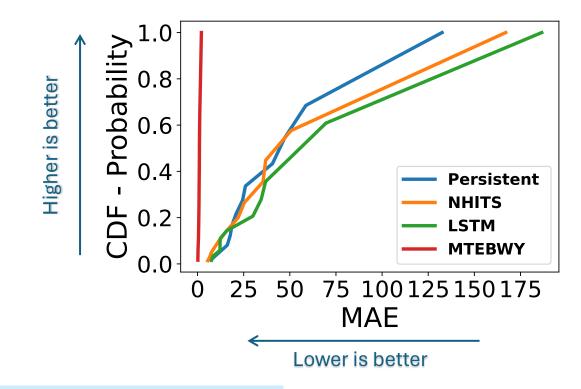
Percentage of times when the ground truth is one of the K nearest neighbors.

• No: Mean Absolute Error (MAE).

Average difference between the nearest neighbor and the ground truth.

Key Results- Comparison with Baselines

1. Prediction Accuracy.



2. Training Overheads.

- MTEBWY: training in **1 second**.
- AutoLSTM and AutoN-HiTS: 6 hours. (NVIDIA A100 GPU with 40 GB Memory)

1- MTEBWY achieves extremely low MAE close to zero across all time series (vertical line).

Why? Because the **set of K predictions** either contains the ground truth or very similar values.

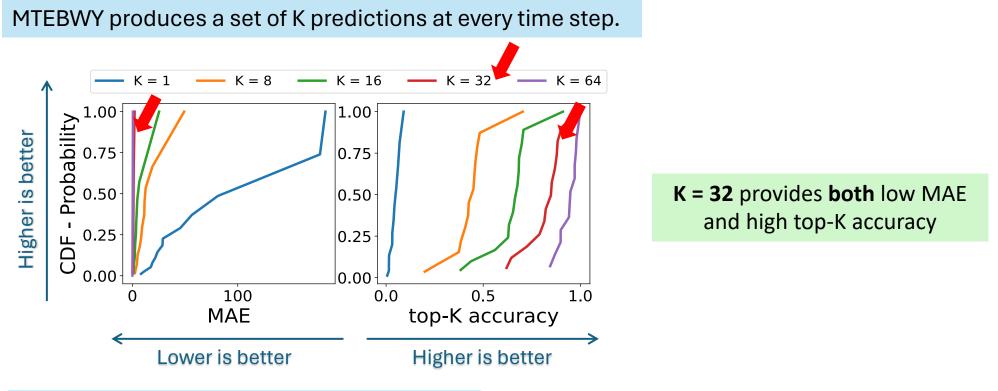
This is the power of embeddings!

2- All other methods perform significantly worse.

Takeaway: MTEBWY it is highly accurate

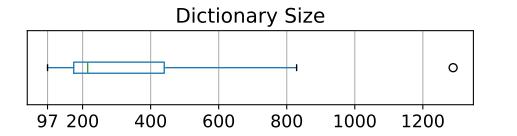
with trivial training overheads.

Sensitivity Analysis of K



How does K compare to the dictionary size?

The dictionary size is the number of unique integer values in a time series. There is 1 dictionary per time series.



Although the dictionary size is large, 200 on average, **K=32** is robust across all time series.

Summary and Conclusions

Embedding is the Future !

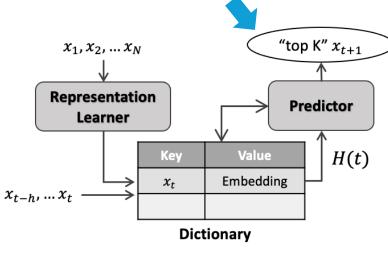
Lessons learned:

- 1. Representation learning unlocks very low error and negligble overheads.
- 2. The key to success is capturing the **spatial proximity** of the embeddings.

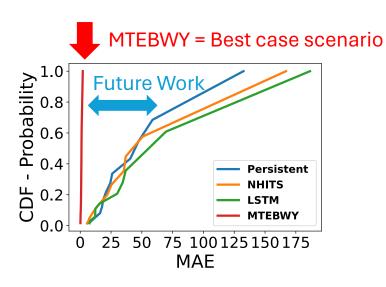
Future Work:

Complete the system prototype:

- Deliver 1 prediction, not K. (use classifier)
- How much will MAE increase?
- Evaluate against more datasets.
- Generalize to have 1 dictionary for more than 1 time series.



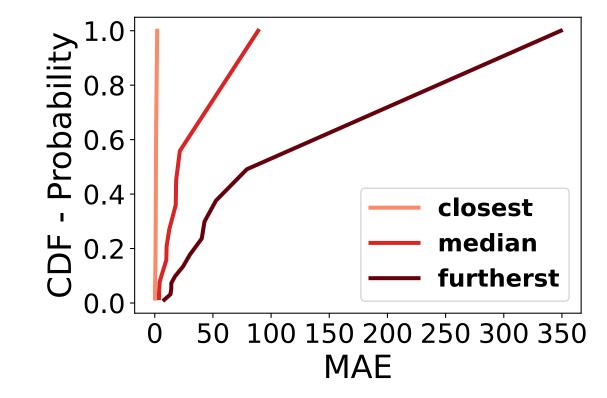
MTEBWY System Prototype



Github Repo

Backup Slides

Quality of top Ks



Other Sensitivity Analysis



