
Toward Using
Representation Learning

for Cloud Resource Usage Forecasting
Razine Moundir Ghorab, Thaleia Dimitra Doudali

IMDEA Software Institute, Madrid, Spain
June 3rd 2024 @ AI4Sys workshop

2/11

Problem: Low Resource Efficiency in the Cloud

Ø Users: over-estimate resource needs, ask for more than they end up using.

Ø Cloud Providers: allocate more resources to satisfy peak load and guarantee Service-Level-Agreements (SLAs).

Ø Cloud Management System: suboptimal resource management decisions.

[Source] https://www.docktera.com/blog/deceptive-cloud-efficiency-do-you-really-pay-as-you-use/

Electricity: we pay for what we use. Hardware Resources: we pay for more than we use.

What causes this significant gap between consumed and paid resources?

3/11

Solution: Resource Management Methods

1. Resource Autoscaling
Ø Automatically adjust the amount of

allocated resources based on demand.

2. Resource Overcommitment
Ø Allocate more virtualized resources than

physically available.

The Key for Effective
Resource Management is
Accurate Forecasting of

Resource Usage.

[Source] https://www.linkedin.com/pulse/autoscaling-cloud-part-1-anshul-jindal

What is the key for these methods to work?

[Source] https://www.laitimes.com/en/article/30aoz_3h08q.html

[Source]https://cloud.google.com/blog/produc
ts/compute/cpu-overcommit-for-sole-tenant-
nodes-now-ga

4/11

Challenge: Accurate Forecasting is Hard to Achieve

Reason 1: Wide variety of observed patterns.

Reason 2: Unseen and unpredictable patterns.

Resource usage patterns:
• application-level: wide variety.
• CPU: periodic cycles, memory: stable.

Emergence of new patterns:
• New users / workloads.
• Same users with new behaviors.

time

C
PU

 U
sa

ge
C

PU
 U

sa
ge

M
em

or
y

U
sa

ge

time

5/11

Current Machine Learning Methods for Time Series Forecasting

“black box”

Long Short-
Term

Memory
(LSTM)

N-Hits (Neural Hierarchical Interpolation)LSTMs (Long Short-Term Memory Neural Networks)

- High runtime overheads.
- High complexity.
- Hard to integrate in production.
- Low explainability.
- Limited predictive capabilities.

Develop a predictor that is:
- Highly accurate.
- Fast, has low overheads.
- Practical to use.
- Explainable.

Limitations Our Goal

[Source] https://towardsdatascience.com/xai-for-forecasting-basis-expansion-17a16655b6e4

6/11

Inspired by Representation Learning

Represent time series as embeddings in the vector space.

Explore spatial proximity to find similarities and make predictions.

Can effectively capture context,
patterns and the ordering of

the time steps.

To find similarities in the vector space,
we can use the K Nearest Neighbors
(KNN) algorithm.

[Source] https://www.mongodb.com/fr-fr/resources/basics/vector-databases

7/11

Proposed System Overview (MTEBWY = May The Embedding Be With You)

Ø Creates a dictionary of embeddings using
word2vec “embedding model” for each value
!! of the timeseries !", !$,. . !%

Ø The dictionary size is the number of unique
integer values in each time serie.

1. Takes as input a window of history !!&', . . !!
2. Maps the !! values to their embeddings in the

dictionary.
3. Calculates the weighted average #(%) of these

embeddings.
4. Finds the K nearest neighbors (KNN) of #(%)

using cosine similarity.
5. Uses the reverse mapping in the dictionary to

return a set of K predictions for time % + 1.

Representation Learner

Predictor

MTEBWY System Prototype

8/11

Experimental Setup

Evaluation Baselines

• Persistent Forecast: Predicts next value as current value ! " + 1 = !(").
• LSTM (Long Short-Term Memory network).

• N-HiTS (Neural Hierarchical Interpolation)
Automatic hyperparameter fine-tuning via AutoLSTM and AutoNHITS from the framework NeuralForecast (Nixtla).

Evaluation Metrics

Is the ground truth among the set of K predictions (KNN) at each time step?

• Yes: top-K accuracy.
Percentage of times when the ground truth is one of the K nearest neighbors.

• No: Mean Absolute Error (MAE).

Average difference between the nearest neighbor and the ground truth.

Dataset

Multiple time series of CPU usage from the DeathStarBench benchmark suite.

9/11

Key Results- Comparison with Βaselines

1. Prediction Accuracy.

Takeaway: MTEBWY it is highly accurate

with trivial training overheads.

1- MTEBWY achieves extremely low MAE
close to zero across all time series (vertical line).

2- All other methods perform significantly worse.

• MTEBWY: training in 1 second.
• AutoLSTM and AutoN-HiTS: 6 hours.

(NVIDIA A100 GPU with 40 GB Memory)

Lower is better

H
ig

he
r i

s
be

tte
r

2. Training Overheads.

Why? Because the set of K predictions either
contains the ground truth or very similar values.

This is the power of embeddings!

10/11

Sensitivity Analysis of K
MTEBWY produces a set of K predictions at every time step.

How does K compare to the dictionary size?

K = 32 provides both low MAE
and high top-K accuracy

Although the dictionary size is large, 200 on average,
K=32 is robust across all time series.

The dictionary size is the number of unique integer values in a time series.
There is 1 dictionary per time series.

Lower is better

H
ig

he
r i

s
be

tte
r

Higher is better

11/11

Summary and Conclusions

ØEmbedding is the Future !

Lessons learned:

1. Representation learning unlocks very low error and negligble overheads.

2. The key to success is capturing the spatial proximity of the embeddings.

Complete the system prototype:
Ø Deliver 1 prediction, not K.

(use classifier)

Ø How much will MAE increase?

Ø Evaluate against more datasets.

Ø Generalize to have 1 dictionary for

more than 1 time series.

Future Work: MTEBWY = Best case scenario

Future Work

MTEBWY System Prototype

Github Repo

Backup Slides

14/11

Quality of top Ks

15/11

Other Sensitivity Analysis

