Is Machine Learning Necessary for
Cloud Resource Usage Forecasting?

Georgia Christofidi, Konstantinos Papaioannou, Thaleia Dimitra Doudali

@ SoCC23, October 30t

=l (dea




The Problem of Cloud Resource Usage Forecasting

Challenge: Low resource efficiency in the Cloud
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Problem: Achieving High Accuracy in Forecasting @
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Workload level

The Patterns of Cloud Resource Usage
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Takeaway: Patterns differ across different types of resources and levels of use (Workload vs VM).

Do we need ML to accurately predict all of the different patterns?
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Forecasting with Machine Learning

input “black box”
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LSTM s for Cloud Resource Usage Forecasting

“BHyPreC: A Novel

Bi-LSTM Based Hybrid Recurrent Neural Network Model
to Predict the CPU Workload of Cloud Virtual Machine”

IEEE Access, 2021

“Large-scale computing

systems workload

Reconciling High Accuracy, Cost-Efficiency, and Low Latency
of Inference Serving Systems
“We used LSTM for time series

EuroSys, 2023 forecasting.”

“The LSTM is especially effective at capturing
load patterns over time.”
ASPLOS, 2019

Seer: Leveraging Big Data to Navigate the Complexity prediction using parallel
of Performance Debugging in Cloud Microservices improved LSTM neural

network”
IEEE Access, 2021




Debunking the High Accuracy of LSTMs

Usecase: Cloud Workloads.
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Usecase: ML Inference Services.
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Source: Figures 5 & 8 from paper “Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving
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Systems” published at EuroMLSys 2023. Twitter trace workload.

Our Insight: LSTM predictions
resemble the previous timestep of
the timeseries.

Do we need ML to produce such “shifted” predictions?
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Source: Figure 12 from blog post “Time Series Analysis,

Visualization & Forecasting with LSTM” on
https://towardsdatascience.com
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Our Approach: Persistent Forecast

Let’s do something simple! :\5 0.022 Predicted Value(t) = Ground Truth(t — 5 mins) persistent forecast
P —— ground truth
For each timestep t in the S 0.02
timeseries, the prediction is the 3
value at the previous timestep. 2 0.018
)
O
> 0.016
We call this the

Persistent Forecast. 0 2 4 6 8
Time (hours)

The prediction (Persistent Forecast) is a shifted version of the ground truth.
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Simple, Lightweight Prediction Accuracy
Application agnostic

No overheads 6/9



Experimental Methodology

Q Extensive experimental evaluation with cloud resource usage data.
Cloud providers Resource Types Resource Levels Usage patterns
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We calculate the prediction error of the persistent forecast.
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Experimental Results

Alibaba Dataset
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Takeaways: Persistent Forecast is highly accurate, across resource types, levels of use and measurements,
because cloud resource usage values persist over time.
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Is Machine Learning Necessary for Cloud

Resource Usage Forecasting?

No.

Open questions

1. When to use ML? predictions

exact use case

system’s performance
data pattern and decision-making

2. Which ML method to use, when necessary?

Probably not LSTMs

Other state-of-the-art ML methods for
timeseries forecasting

Suggestions

1. Revisit existing systems and study the
data patterns.

Values persist over time?

\\\{

Try the Persistent Forecast

2. Insightful and judicious use of ML,
simple mechanisms to the extent
possible.

Scan for code & paper:
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